Predicting lattice thermal conductivity of semiconductors from atomic-information-enhanced CGCNN combined with transfer learning

热导率 半导体 材料科学 机器学习 格子(音乐) 带隙 人工智能 计算机科学 物理 光电子学 声学 复合材料
作者
Zeyu Wang,Jinlong Ma,Run Hu,Xiaobing Luo
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:122 (15) 被引量:12
标识
DOI:10.1063/5.0142150
摘要

Rapid identification of lattice thermal conductivity of semiconductors from their crystal structure is required in the discovery of functional materials. A promising strategy is using a machine learning method based on a first-principles dataset, which, however, suffers from the dilemma of too little data available. In this work, the crystal graph convolutional neural networks (CGCNN) model was improved by enhancing the information of atomic descriptors (for short CGCNN-D), and the transfer learning (TL) method was combined to overcome the problem of small datasets. It is found that the CGCNN-D has improved predicting performance for both electronic bandgap with large data volume and thermal conductivity with small data volume, with the mean absolute error reducing 7% and 10%, respectively, indicating the importance of the improved atomic description. Applying TL with electronic bandgap as a proxy into the CGCNN-D further upgrades the prediction accuracy for thermal conductivity that has only 95 pieces of data, yielding 19% decrease in the mean absolute error as compared to the original CGCNN. The trained CGCNN-D-TL model was used to quickly estimate the thermal conductivities of thousands of semiconductors, and the materials identified with potentially high thermal conductivity were further screened by the optimized Slack model. Finally, the most promising BC2N was discovered and then confirmed by the first-principles calculations, which shows room-temperature thermal conductivities of 731, 594, and 500 W m−1 K–1 along the three principal axes of its lattice structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
bkagyin应助tfldog采纳,获得10
1秒前
1秒前
nuomici发布了新的文献求助30
1秒前
任性诺言发布了新的文献求助10
2秒前
2秒前
mmmmm发布了新的文献求助10
2秒前
2秒前
ling完成签到,获得积分10
2秒前
恩彧完成签到,获得积分10
2秒前
3秒前
sunbursl发布了新的文献求助10
3秒前
3秒前
dyw发布了新的文献求助10
3秒前
3秒前
笑点低靖仇完成签到,获得积分10
4秒前
沐易发布了新的文献求助10
4秒前
4秒前
4秒前
sherrymasha完成签到,获得积分10
5秒前
打打应助梁敏采纳,获得30
5秒前
sxx发布了新的文献求助10
5秒前
6秒前
7秒前
万能图书馆应助聪明元蝶采纳,获得30
8秒前
XCL发布了新的文献求助10
8秒前
orixero应助聪明元蝶采纳,获得10
8秒前
顾矜应助聪明元蝶采纳,获得10
8秒前
背后的幻巧完成签到,获得积分10
8秒前
pcr163应助祖问筠采纳,获得200
8秒前
亚婷儿发布了新的文献求助10
8秒前
9秒前
9秒前
nt完成签到,获得积分10
9秒前
S锐发布了新的文献求助10
9秒前
10秒前
10秒前
董烁烨完成签到,获得积分10
10秒前
养不熟的野猫完成签到,获得积分10
10秒前
云汐儿完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5591092
求助须知:如何正确求助?哪些是违规求助? 4677173
关于积分的说明 14799479
捐赠科研通 4637313
什么是DOI,文献DOI怎么找? 2533204
邀请新用户注册赠送积分活动 1501536
关于科研通互助平台的介绍 1468913