亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detection and counting of banana bunches by integrating deep learning and classic image-processing algorithms

聚类分析 质心 分割 像素 算法 人工智能 图像处理 计算机科学 数学 模式识别(心理学) 统计 图像(数学) 光学 物理 梁(结构)
作者
Fengyun Wu,Zhou Yang,Xingkang Mo,Zihao Wu,Wei Tang,Jieli Duan,Xiangjun Zou
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:209: 107827-107827 被引量:36
标识
DOI:10.1016/j.compag.2023.107827
摘要

Robots must first detect the number of banana bunches when making judgements on sterile bud removal and estimating weight for harvest in the field environment. Banana bunches are complex in shape, arranged in a nonlinear helical curve along the stalk, and have different growth states in different periods, with bunches widely spaced in the early period and densely arranged in the harvest period. Deep learning nor classical image-processing algorithms alone can detect and count bunches in both periods. Therefore, these algorithms were combined to calculate the number of bunches in the two periods. For counting bunches in the debudding period, the convolutional neural network Deeplab V3 + model and classic image-processing algorithm were combined to finely segment bunches and calculate bunch numbers, providing intelligent decision-making for judgment on the timing for debudding. To count bunches during harvest, based on deep learning to identify the overall banana fruit cluster, the edge detection algorithm was employed to extract the centroid points of fruit fingers, and the clustering algorithm was used to determine the optimal number of bunches on the visual detection surface. An estimation model for the total number of bunches, including hidden ones, was created based on their helical curve arrangement. The results indicated a target segmentation MIoU of 0.878 during the debudding period, a mean pixel precision of 0.936, and a final bunch detection accuracy rate of 86%. Bunch detection was highly challenging during the harvest period, with a detection accuracy rate of 76% and a final overall bunch counting accuracy rate of 93.2%. Software was designed to estimate banana fruit weight during the harvest period. This research method provided a theoretical basis and experimental data support for automatic sterile bud removal and weight estimation for bananas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
42秒前
dongmei发布了新的文献求助10
48秒前
feenuar完成签到,获得积分10
56秒前
慕青应助dongmei采纳,获得10
56秒前
57秒前
纳米完成签到,获得积分10
1分钟前
1分钟前
present发布了新的文献求助10
2分钟前
Akim应助动听文轩采纳,获得10
2分钟前
2分钟前
美满踏歌完成签到,获得积分20
2分钟前
2分钟前
2分钟前
2分钟前
美满踏歌发布了新的文献求助30
2分钟前
present完成签到,获得积分10
2分钟前
艾米发布了新的文献求助10
2分钟前
艾米完成签到,获得积分20
2分钟前
牧沛凝完成签到 ,获得积分10
2分钟前
3分钟前
小海应助科研通管家采纳,获得10
3分钟前
小海应助科研通管家采纳,获得10
3分钟前
3分钟前
傻傻的芝发布了新的文献求助10
4分钟前
4分钟前
Cccc小懒发布了新的文献求助10
4分钟前
落寞的怜雪完成签到,获得积分20
4分钟前
XCHI完成签到 ,获得积分10
5分钟前
小海应助科研通管家采纳,获得10
5分钟前
小海应助科研通管家采纳,获得10
5分钟前
5分钟前
jingliu发布了新的文献求助10
5分钟前
丘比特应助落寞的怜雪采纳,获得10
6分钟前
传奇3应助友好板栗采纳,获得10
6分钟前
陶醉的烤鸡完成签到 ,获得积分10
6分钟前
Orange应助小熊采纳,获得10
6分钟前
田様应助wuming采纳,获得30
6分钟前
小白菜完成签到 ,获得积分10
6分钟前
6分钟前
小熊发布了新的文献求助10
6分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788218
求助须知:如何正确求助?哪些是违规求助? 3333687
关于积分的说明 10262981
捐赠科研通 3049526
什么是DOI,文献DOI怎么找? 1673602
邀请新用户注册赠送积分活动 802090
科研通“疑难数据库(出版商)”最低求助积分说明 760504