Deep Neighborhood-aware Proxy Hashing with Uniform Distribution Constraint for Cross-modal Retrieval

计算机科学 情态动词 散列函数 约束(计算机辅助设计) 代理(统计) 理论计算机科学 计算机安全 机器学习 化学 高分子化学 机械工程 工程类
作者
Yadong Huo,Qibing Qin,Jiangyan Dai,Wenfeng Zhang,Lei Huang,Chengduan Wang
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:20 (6): 1-23 被引量:25
标识
DOI:10.1145/3643639
摘要

Cross-modal retrieval methods based on hashing have gained significant attention in both academic and industrial research. Deep learning techniques have played a crucial role in advancing supervised cross-modal hashing methods, leading to significant practical improvements. Despite these achievements, current deep cross-modal hashing still encounters some underexplored limitations. Specifically, most of the available deep hashing usually utilizes pair-wise or triplet-wise strategies to promote the separation of the inter-classes by calculating the relative similarities between samples, weakening the compactness of intra-class data from different modalities, which could generate ambiguous neighborhoods. In this article, the Deep Neighborhood-aware Proxy Hashing (DNPH) framework is proposed to learn a discriminative embedding space with the original neighborhood relation preserved. By introducing learnable shared category proxies, the neighborhood-aware proxy loss is proposed to project the heterogeneous data into a unified common embedding, in which the sample is pulled closer to the corresponding category proxy and is pushed away from other proxies, capturing small within-class scatter and big between-class scatter. To enhance the quality of the obtained binary codes, the uniform distribution constraint is developed to make each hash bit independently obey the discrete uniform distribution. In addition, the discrimination loss is designed to preserve modality-specific semantic information of samples. Extensive experiments are performed on three benchmark datasets to prove that our proposed DNPH framework achieves comparable or even better performance compared with the state-of-the-art cross-modal retrieval applications. The corresponding code implementation of our DNPH framework is as follows: https://github.com/QinLab-WFU/OUR-DNPH .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
丁玉杰完成签到,获得积分10
刚刚
1秒前
1秒前
赵yy应助啥时候能退休采纳,获得10
1秒前
无极微光发布了新的文献求助10
3秒前
3秒前
loko发布了新的文献求助10
3秒前
淡然白萱发布了新的文献求助10
4秒前
4秒前
13888发布了新的文献求助10
5秒前
JamesPei应助呆呆熊采纳,获得10
5秒前
勤劳冥王星完成签到,获得积分20
5秒前
希望天下0贩的0应助hinsir采纳,获得10
6秒前
6秒前
6秒前
Zx_1993应助冷酷的树叶采纳,获得20
7秒前
jingdaitianxiang完成签到 ,获得积分10
7秒前
阔达千萍应助闪闪小小采纳,获得10
7秒前
ROGE R完成签到,获得积分20
8秒前
Mid发布了新的文献求助10
9秒前
小蘑菇应助nikkirem采纳,获得10
10秒前
10秒前
10秒前
chenzhiyu完成签到,获得积分10
10秒前
qiaokizhang发布了新的文献求助10
11秒前
11秒前
认真擎汉完成签到,获得积分20
11秒前
汉堡包应助狂野的若烟采纳,获得10
11秒前
11秒前
Edward发布了新的文献求助10
12秒前
agd发布了新的文献求助20
12秒前
草莓杏仁饼完成签到 ,获得积分10
12秒前
丘比特应助anny2022采纳,获得10
13秒前
13秒前
十一完成签到,获得积分10
13秒前
Jasper应助chenzhiyu采纳,获得10
14秒前
昆医周杰伦完成签到,获得积分10
14秒前
ROGE R发布了新的文献求助10
15秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5341667
求助须知:如何正确求助?哪些是违规求助? 4477790
关于积分的说明 13936857
捐赠科研通 4373983
什么是DOI,文献DOI怎么找? 2403246
邀请新用户注册赠送积分活动 1396065
关于科研通互助平台的介绍 1368096