A novel framework for artificial intelligence explainability via the Technology Acceptance Model and Rapid Estimate of Adult Literacy in Medicine using machine learning

人工智能 计算机科学 机器学习 成人识字 读写能力 数据科学 知识管理 心理学 教育学
作者
Dimitrios P. Panagoulias,Maria Virvou,George A. Tsihrintzis
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:248: 123375-123375 被引量:61
标识
DOI:10.1016/j.eswa.2024.123375
摘要

The significant proliferation of AI-empowered systems and machine learning (ML) across various examined domains underscores the vital necessity for comprehensive and customised explainability frameworks to lead to usable and trustworthy systems. Especially in the medical domain, where validation of methodologies and outcomes is as important as the adoption rate of such systems, the requirements of the depth and the level of abstraction of the explainability are particularly important and necessitate a systemic approach to ensure a proper definition. Explainability and interpretability are important usability and trustworthiness properties of AI-empowered systems and, as such, constitute important factors for technology acceptance. In this paper, we propose a novel framework for explainability requirements in AI-empowered systems using the Technology Acceptance Model (TAM). This framework employs targeted ML (hierarchical clustering, k-means or other) to acquire a user model for personalised, multi-layered explainability. Our novel framework integrates a rule-based system, which guides the degree of trustworthiness to be achieved based on user perception and AI literacy level. We test this methodology in the case of AI-empowered medical systems to (1) assess and quantify the doctors’ abilities and familiarisation with technology and AI, (2) generate layers of personalised explainability based on user ability and user needs in terms of trustworthiness and (3) provide the necessary environment for transparency and validation. To assess and quantify the doctors’ abilities we have considered Rapid Estimate of Adult Literacy in Medicine (REALM) a tool commonly used in the medical domain to bridge the communication gap between patients and doctors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
cirsheria完成签到,获得积分20
1秒前
1秒前
1秒前
1秒前
2秒前
颜子尧完成签到 ,获得积分10
3秒前
cirsheria发布了新的文献求助30
5秒前
5秒前
5秒前
6秒前
星辰大海应助lyn123采纳,获得10
6秒前
shinn发布了新的文献求助10
7秒前
Snoopy发布了新的文献求助10
7秒前
WJN完成签到,获得积分10
8秒前
restart关注了科研通微信公众号
9秒前
9秒前
今后应助某某采纳,获得10
9秒前
11秒前
Hello应助耶耶粘豆包采纳,获得10
11秒前
11秒前
12秒前
充电宝应助尺素寸心采纳,获得10
12秒前
13秒前
区区完成签到,获得积分10
14秒前
哈哈军哥哥完成签到,获得积分10
14秒前
WJN发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
3587发布了新的文献求助10
15秒前
听雨眠发布了新的文献求助10
16秒前
张羊羔完成签到 ,获得积分10
16秒前
16秒前
zozo完成签到 ,获得积分10
16秒前
香蕉觅云应助SCI采纳,获得10
17秒前
17秒前
自然涵易完成签到,获得积分10
18秒前
18秒前
janesharon完成签到,获得积分10
19秒前
19秒前
在水一方应助lld采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610111
求助须知:如何正确求助?哪些是违规求助? 4694594
关于积分的说明 14883542
捐赠科研通 4721206
什么是DOI,文献DOI怎么找? 2544999
邀请新用户注册赠送积分活动 1509911
关于科研通互助平台的介绍 1473039