Diffusion Coefficients of Variable-Size Amphiphilic Additives in a Glass-Forming Polyethylene Matrix

阿累尼乌斯方程 玻璃化转变 亚稳态 热力学 扩散 聚合物 材料科学 聚乙烯 基质(化学分析) 化学物理 化学 高分子化学 活化能 物理化学 复合材料 有机化学 物理
作者
María del Mar Cammarata,Mario Contín,R. Martı́n Negri,Matías H. Factorovich
出处
期刊:Journal of Physical Chemistry B [American Chemical Society]
标识
DOI:10.1021/acs.jpcb.3c04904
摘要

Diffusion of additives in polymers is an important issue in the plastics industry since migratory-type molecules are widely used to tune the properties of polymeric composites. Predicting the diffusional behavior of new additives can minimize the need for repetitive experiments. This work presents molecular dynamics simulations at the microsecond time scale and uses the MARTINI force field to estimate self-diffusion coefficients, D, of six monounsaturated amides and their analogs carboxylic acids in polyethylene matrices (PE, MW = 5600 Da). The results are strongly influenced by the glass-forming properties of the PE matrix, which we characterize by three distinct temperatures. The metastability region (T < 325 K), the glass transition temperature (Tg = 256–260 K), and the end of the transition (T ≅ 200 K). Self-diffusion mechanisms are inferred from the results of the dependence of D on the molecular mass of the additive, observing a Rouse-like behavior at high temperatures and deviations from it within the metastability region of the matrix. Interestingly, D values are nonsensitive to the nature of the considered polar head for additives of similar size. The temperature-dependent behavior of D follows, at fixed additive size, a linear Arrhenius pattern at high temperatures and a super Arrhenius trend at lower temperatures, which is well represented with a power law equation as predicted by the Mode Coupling Theory (MCT). We offer a conceptual explanation for the observed super-Arrhenius behavior. This explanation draws on Truhlar and Kohen's interpretation of the available energies at both the initial and the transition states along the diffusion pathway. The matrix's mobility significantly affects solute self-diffusion, yielding equal activation enthalpies for the Arrhenius region or the same power law parameters for the super-Arrhenius regime. Finally, we establish a one-to-one time-equivalence of the self-diffusion processes between CG and all-atom systems for the largest additives and the PE matrix in the high-temperature regime.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jasper应助jsjjs采纳,获得10
1秒前
多肉丸子发布了新的文献求助10
1秒前
叮咚发布了新的文献求助30
1秒前
2秒前
zss完成签到,获得积分10
3秒前
CodeCraft应助轻松的惜芹采纳,获得20
4秒前
爆米花应助椰ye采纳,获得10
4秒前
仙笛童神发布了新的文献求助10
4秒前
5秒前
5秒前
HJM发布了新的文献求助10
7秒前
哈哈怪完成签到,获得积分10
8秒前
孙燕应助完美岂愈采纳,获得50
9秒前
9秒前
FFFFFF发布了新的文献求助10
9秒前
山谷与花完成签到,获得积分20
9秒前
火星上牛青完成签到,获得积分10
10秒前
erhao完成签到 ,获得积分10
10秒前
坎坎坷坷关注了科研通微信公众号
10秒前
灯与鬼发布了新的文献求助10
10秒前
12秒前
12秒前
13秒前
Alex完成签到,获得积分10
13秒前
14秒前
catherine完成签到,获得积分10
14秒前
15秒前
17秒前
不安青牛应助科研通管家采纳,获得10
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
华仔应助科研通管家采纳,获得10
17秒前
慕青应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
SYLH应助科研通管家采纳,获得10
17秒前
SYLH应助科研通管家采纳,获得10
17秒前
MY999发布了新的文献求助10
17秒前
SYLH应助科研通管家采纳,获得10
17秒前
18秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
求 5G-Advanced NTN空天地一体化技术 pdf版 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4065713
求助须知:如何正确求助?哪些是违规求助? 3604364
关于积分的说明 11447194
捐赠科研通 3326838
什么是DOI,文献DOI怎么找? 1828872
邀请新用户注册赠送积分活动 899036
科研通“疑难数据库(出版商)”最低求助积分说明 819410