Battery Health Estimation Based on Multidomain Transfer Learning

计算机科学 克里金 学习迁移 机器学习 人工智能 概念漂移 过程(计算) 健康状况 电池(电) 支持向量机 数据挖掘 试验数据 数据流挖掘 功率(物理) 物理 量子力学 程序设计语言 操作系统
作者
Hanmin Sheng,Biplob Ray,Shaben Kayamboo,Xintao Xu,Shafei Wang
出处
期刊:IEEE Transactions on Power Electronics [Institute of Electrical and Electronics Engineers]
卷期号:39 (4): 4758-4770 被引量:5
标识
DOI:10.1109/tpel.2023.3346335
摘要

Machine learning methods are expected to play a significant role in battery state of charge (SOH) estimation, leveraging their strengths in self-learning and nonlinear fitting. One of the key challenges in SOH estimation is the concept drift issue, which refers to changes in the data distribution between the training and test datasets. General machine learning methods assume that the training data shares similar characteristics with the test data. However, in SOH estimation tasks, differences in the environment and the characteristics of the battery itself can cause concept drift, which then impacts the model's effectiveness. As a result, many data-driven models that perform well in laboratory conditions struggle to be applied to other target batteries. This is a common and significant battery diagnosis technology issue, yet it remains unresolved. This article proposes a multidomain transfer Gaussian process regression (MTR-GPR) SOH estimation approach to address this issue. In this model, training data do not directly participate in the model's learning process. Instead, the MTR-GPR model extracts information from different datasets based on the distribution similarity. This method can fully use multisource battery ageing data while reducing the negative impact of distribution differences. Experimental results prove that MTR-GPR can make reliable SOH estimates with only 20% of target battery data. On the other hand, this method can provide the posterior probability distribution of the prediction results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Strolling完成签到,获得积分10
刚刚
浅浅发布了新的文献求助10
刚刚
CaiXiXi完成签到,获得积分10
刚刚
爆米花应助Dr.c采纳,获得30
1秒前
2秒前
核桃发布了新的文献求助10
2秒前
科研通AI6应助漫天繁星采纳,获得10
3秒前
小蘑菇应助无奈的黑猫采纳,获得30
4秒前
思源应助半只小猪采纳,获得10
4秒前
上官若男应助袁向薇采纳,获得10
5秒前
6秒前
6秒前
7秒前
10秒前
10秒前
大气元彤发布了新的文献求助10
11秒前
核桃发布了新的文献求助10
11秒前
香蕉觅云应助木子采纳,获得30
11秒前
我是老大应助受伤白安采纳,获得10
11秒前
12秒前
科研通AI6应助活力论文采纳,获得10
13秒前
GEJIA67发布了新的文献求助10
13秒前
撒旦asd发布了新的文献求助10
15秒前
黄河鲤鱼儿完成签到,获得积分10
15秒前
无极微光应助和谐青柏采纳,获得20
16秒前
16秒前
科目三应助Zhaobin采纳,获得10
17秒前
傲娇的曼凡完成签到,获得积分20
17秒前
17秒前
tree发布了新的文献求助10
17秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
齐小明发布了新的文献求助10
19秒前
初心完成签到 ,获得积分10
19秒前
所所应助张大旺采纳,获得10
21秒前
22秒前
doudoumiao发布了新的文献求助10
23秒前
大瓶子发布了新的文献求助10
23秒前
乐乐应助外向的初曼采纳,获得10
24秒前
24秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615265
求助须知:如何正确求助?哪些是违规求助? 4700164
关于积分的说明 14906941
捐赠科研通 4741703
什么是DOI,文献DOI怎么找? 2548025
邀请新用户注册赠送积分活动 1511771
关于科研通互助平台的介绍 1473781