Battery Health Estimation Based on Multidomain Transfer Learning

计算机科学 克里金 学习迁移 机器学习 人工智能 概念漂移 过程(计算) 健康状况 电池(电) 支持向量机 数据挖掘 试验数据 数据流挖掘 功率(物理) 物理 量子力学 程序设计语言 操作系统
作者
Hanmin Sheng,Biplob Ray,Shaben Kayamboo,Xintao Xu,Shafei Wang
出处
期刊:IEEE Transactions on Power Electronics [Institute of Electrical and Electronics Engineers]
卷期号:39 (4): 4758-4770 被引量:5
标识
DOI:10.1109/tpel.2023.3346335
摘要

Machine learning methods are expected to play a significant role in battery state of charge (SOH) estimation, leveraging their strengths in self-learning and nonlinear fitting. One of the key challenges in SOH estimation is the concept drift issue, which refers to changes in the data distribution between the training and test datasets. General machine learning methods assume that the training data shares similar characteristics with the test data. However, in SOH estimation tasks, differences in the environment and the characteristics of the battery itself can cause concept drift, which then impacts the model's effectiveness. As a result, many data-driven models that perform well in laboratory conditions struggle to be applied to other target batteries. This is a common and significant battery diagnosis technology issue, yet it remains unresolved. This article proposes a multidomain transfer Gaussian process regression (MTR-GPR) SOH estimation approach to address this issue. In this model, training data do not directly participate in the model's learning process. Instead, the MTR-GPR model extracts information from different datasets based on the distribution similarity. This method can fully use multisource battery ageing data while reducing the negative impact of distribution differences. Experimental results prove that MTR-GPR can make reliable SOH estimates with only 20% of target battery data. On the other hand, this method can provide the posterior probability distribution of the prediction results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助超大碗芋泥采纳,获得10
刚刚
刚刚
白衣卿相完成签到,获得积分10
1秒前
dongdong2025完成签到,获得积分10
3秒前
3秒前
SM关闭了SM文献求助
4秒前
CipherSage应助HMethod采纳,获得10
4秒前
5秒前
RC_Wang发布了新的文献求助10
5秒前
6秒前
岳阳张震岳完成签到,获得积分10
6秒前
7秒前
隐形曼青应助tinale_huang采纳,获得30
8秒前
9秒前
9秒前
MissingParadise完成签到 ,获得积分10
10秒前
芥楠完成签到,获得积分10
11秒前
菠萝橙子完成签到,获得积分10
11秒前
淡然的芷荷完成签到 ,获得积分10
12秒前
杨丽佳发布了新的文献求助10
13秒前
13秒前
13秒前
Orange应助文艺的冬卉采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
小杨发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
16秒前
可爱寻菡发布了新的文献求助30
16秒前
今后应助Lee采纳,获得10
18秒前
18秒前
lizhuang完成签到 ,获得积分10
19秒前
19秒前
20秒前
李等等发布了新的文献求助10
20秒前
20秒前
安于一隅发布了新的文献求助10
21秒前
Yeah完成签到,获得积分10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646335
求助须知:如何正确求助?哪些是违规求助? 4771043
关于积分的说明 15034517
捐赠科研通 4805132
什么是DOI,文献DOI怎么找? 2569436
邀请新用户注册赠送积分活动 1526494
关于科研通互助平台的介绍 1485812