Battery Health Estimation Based on Multidomain Transfer Learning

计算机科学 克里金 学习迁移 机器学习 人工智能 概念漂移 过程(计算) 健康状况 电池(电) 支持向量机 数据挖掘 试验数据 数据流挖掘 功率(物理) 物理 量子力学 程序设计语言 操作系统
作者
Hanmin Sheng,Biplob Ray,Shaben Kayamboo,Xintao Xu,Shafei Wang
出处
期刊:IEEE Transactions on Power Electronics [Institute of Electrical and Electronics Engineers]
卷期号:39 (4): 4758-4770 被引量:5
标识
DOI:10.1109/tpel.2023.3346335
摘要

Machine learning methods are expected to play a significant role in battery state of charge (SOH) estimation, leveraging their strengths in self-learning and nonlinear fitting. One of the key challenges in SOH estimation is the concept drift issue, which refers to changes in the data distribution between the training and test datasets. General machine learning methods assume that the training data shares similar characteristics with the test data. However, in SOH estimation tasks, differences in the environment and the characteristics of the battery itself can cause concept drift, which then impacts the model's effectiveness. As a result, many data-driven models that perform well in laboratory conditions struggle to be applied to other target batteries. This is a common and significant battery diagnosis technology issue, yet it remains unresolved. This article proposes a multidomain transfer Gaussian process regression (MTR-GPR) SOH estimation approach to address this issue. In this model, training data do not directly participate in the model's learning process. Instead, the MTR-GPR model extracts information from different datasets based on the distribution similarity. This method can fully use multisource battery ageing data while reducing the negative impact of distribution differences. Experimental results prove that MTR-GPR can make reliable SOH estimates with only 20% of target battery data. On the other hand, this method can provide the posterior probability distribution of the prediction results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
3秒前
Liu发布了新的文献求助10
5秒前
CT完成签到,获得积分10
5秒前
xiaosu发布了新的文献求助10
6秒前
YY发布了新的文献求助30
7秒前
昏睡的人完成签到 ,获得积分10
8秒前
Komorebi完成签到 ,获得积分10
10秒前
zhaozhao发布了新的文献求助20
12秒前
71完成签到,获得积分10
12秒前
小白完成签到 ,获得积分10
13秒前
14秒前
快乐芷荷完成签到 ,获得积分10
14秒前
chj完成签到,获得积分10
14秒前
qiqiqiqiqi完成签到 ,获得积分10
14秒前
hope完成签到,获得积分10
15秒前
20秒前
saberLee发布了新的文献求助10
20秒前
赵宇鹏完成签到,获得积分10
20秒前
21秒前
爱笑的蛟凤完成签到,获得积分10
23秒前
笨笨千亦完成签到 ,获得积分10
25秒前
左欣岳完成签到 ,获得积分10
26秒前
27秒前
saberLee完成签到,获得积分10
27秒前
28秒前
斯文败类应助樱花打落雨采纳,获得10
29秒前
无私航空发布了新的文献求助10
29秒前
30秒前
Lucas应助gaijiaofanv采纳,获得10
32秒前
开心幻巧完成签到,获得积分10
32秒前
33秒前
汉堡包应助四维穿梭采纳,获得10
33秒前
闲人颦儿完成签到,获得积分10
34秒前
xiaosu发布了新的文献求助10
35秒前
萨尔莫斯发布了新的文献求助10
36秒前
无私航空完成签到,获得积分10
37秒前
YY完成签到,获得积分20
38秒前
儒雅的菠萝吹雪完成签到,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560419
求助须知:如何正确求助?哪些是违规求助? 4645567
关于积分的说明 14675671
捐赠科研通 4586746
什么是DOI,文献DOI怎么找? 2516534
邀请新用户注册赠送积分活动 1490145
关于科研通互助平台的介绍 1460963