Battery Health Estimation Based on Multidomain Transfer Learning

计算机科学 克里金 学习迁移 机器学习 人工智能 概念漂移 过程(计算) 健康状况 电池(电) 支持向量机 数据挖掘 试验数据 数据流挖掘 功率(物理) 操作系统 物理 量子力学 程序设计语言
作者
Hanmin Sheng,Biplob Ray,Shaben Kayamboo,Xintao Xu,Shafei Wang
出处
期刊:IEEE Transactions on Power Electronics [Institute of Electrical and Electronics Engineers]
卷期号:39 (4): 4758-4770 被引量:5
标识
DOI:10.1109/tpel.2023.3346335
摘要

Machine learning methods are expected to play a significant role in battery state of charge (SOH) estimation, leveraging their strengths in self-learning and nonlinear fitting. One of the key challenges in SOH estimation is the concept drift issue, which refers to changes in the data distribution between the training and test datasets. General machine learning methods assume that the training data shares similar characteristics with the test data. However, in SOH estimation tasks, differences in the environment and the characteristics of the battery itself can cause concept drift, which then impacts the model's effectiveness. As a result, many data-driven models that perform well in laboratory conditions struggle to be applied to other target batteries. This is a common and significant battery diagnosis technology issue, yet it remains unresolved. This article proposes a multidomain transfer Gaussian process regression (MTR-GPR) SOH estimation approach to address this issue. In this model, training data do not directly participate in the model's learning process. Instead, the MTR-GPR model extracts information from different datasets based on the distribution similarity. This method can fully use multisource battery ageing data while reducing the negative impact of distribution differences. Experimental results prove that MTR-GPR can make reliable SOH estimates with only 20% of target battery data. On the other hand, this method can provide the posterior probability distribution of the prediction results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZhonghanWen发布了新的文献求助10
1秒前
曲奇吐司完成签到,获得积分10
1秒前
香蕉觅云应助加美希尔采纳,获得10
1秒前
2秒前
科研通AI5应助cmicha采纳,获得10
2秒前
猴子完成签到,获得积分10
3秒前
领导范儿应助哈哈欢采纳,获得10
3秒前
壮观问寒发布了新的文献求助10
5秒前
5秒前
bkagyin应助Vegccc采纳,获得10
6秒前
顾矜应助土匪猫采纳,获得10
7秒前
7秒前
11111发布了新的文献求助30
8秒前
安安完成签到,获得积分10
9秒前
顺利的若灵完成签到,获得积分10
11秒前
科研小笨猪完成签到,获得积分10
13秒前
cdercder应助翁雁丝采纳,获得10
15秒前
15秒前
16秒前
土匪猫完成签到,获得积分10
16秒前
怡然剑成完成签到 ,获得积分10
19秒前
Clover完成签到 ,获得积分10
20秒前
Vegccc发布了新的文献求助10
20秒前
加美希尔发布了新的文献求助10
22秒前
影花晴应助wodeqiche2007采纳,获得10
23秒前
littlexu完成签到,获得积分10
25秒前
27秒前
姜姜完成签到 ,获得积分10
27秒前
28秒前
30秒前
kejun发布了新的文献求助30
30秒前
A玖123456789_关注了科研通微信公众号
30秒前
zz发布了新的文献求助10
34秒前
36秒前
田様应助zz采纳,获得10
38秒前
白鸽鸽完成签到,获得积分10
40秒前
华仔应助Wdw2236采纳,获得10
40秒前
科研通AI5应助科研通管家采纳,获得10
41秒前
iNk应助科研通管家采纳,获得10
41秒前
科研通AI5应助科研通管家采纳,获得10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761753
求助须知:如何正确求助?哪些是违规求助? 3305518
关于积分的说明 10134626
捐赠科研通 3019564
什么是DOI,文献DOI怎么找? 1658226
邀请新用户注册赠送积分活动 791974
科研通“疑难数据库(出版商)”最低求助积分说明 754751