Battery Health Estimation Based on Multidomain Transfer Learning

计算机科学 克里金 学习迁移 机器学习 人工智能 概念漂移 过程(计算) 健康状况 电池(电) 支持向量机 数据挖掘 试验数据 数据流挖掘 功率(物理) 物理 量子力学 程序设计语言 操作系统
作者
Hanmin Sheng,Biplob Ray,Shaben Kayamboo,Xintao Xu,Shafei Wang
出处
期刊:IEEE Transactions on Power Electronics [Institute of Electrical and Electronics Engineers]
卷期号:39 (4): 4758-4770 被引量:5
标识
DOI:10.1109/tpel.2023.3346335
摘要

Machine learning methods are expected to play a significant role in battery state of charge (SOH) estimation, leveraging their strengths in self-learning and nonlinear fitting. One of the key challenges in SOH estimation is the concept drift issue, which refers to changes in the data distribution between the training and test datasets. General machine learning methods assume that the training data shares similar characteristics with the test data. However, in SOH estimation tasks, differences in the environment and the characteristics of the battery itself can cause concept drift, which then impacts the model's effectiveness. As a result, many data-driven models that perform well in laboratory conditions struggle to be applied to other target batteries. This is a common and significant battery diagnosis technology issue, yet it remains unresolved. This article proposes a multidomain transfer Gaussian process regression (MTR-GPR) SOH estimation approach to address this issue. In this model, training data do not directly participate in the model's learning process. Instead, the MTR-GPR model extracts information from different datasets based on the distribution similarity. This method can fully use multisource battery ageing data while reducing the negative impact of distribution differences. Experimental results prove that MTR-GPR can make reliable SOH estimates with only 20% of target battery data. On the other hand, this method can provide the posterior probability distribution of the prediction results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yznfly应助安谣采纳,获得30
刚刚
1秒前
2秒前
3秒前
文艺谷蓝发布了新的文献求助10
3秒前
天天快乐应助drz采纳,获得10
4秒前
5秒前
打打应助诚心以冬采纳,获得10
6秒前
6秒前
无知发布了新的文献求助10
6秒前
leyangya完成签到,获得积分10
7秒前
Lili发布了新的文献求助10
8秒前
大胆的弼完成签到,获得积分10
9秒前
11秒前
ziggyyyy发布了新的文献求助10
11秒前
NYM发布了新的文献求助10
12秒前
13秒前
领导范儿应助璨澄采纳,获得10
14秒前
14秒前
Zkxxxx应助诚心的丹秋采纳,获得10
15秒前
wwwwrrrrr发布了新的文献求助10
15秒前
秀丽的芷珍完成签到 ,获得积分10
15秒前
花花世界J完成签到,获得积分10
15秒前
15秒前
花花世界J发布了新的文献求助10
17秒前
Akim应助博修采纳,获得10
18秒前
drz发布了新的文献求助10
18秒前
19秒前
殷启维完成签到,获得积分10
20秒前
JamesPei应助文艺谷蓝采纳,获得10
20秒前
哈尔行者完成签到,获得积分10
22秒前
腼腆的猎豹完成签到,获得积分20
22秒前
ZTH发布了新的文献求助10
22秒前
22秒前
24秒前
星夜完成签到,获得积分10
26秒前
26秒前
27秒前
28秒前
小楠关注了科研通微信公众号
30秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962205
求助须知:如何正确求助?哪些是违规求助? 3508430
关于积分的说明 11140874
捐赠科研通 3241109
什么是DOI,文献DOI怎么找? 1791341
邀请新用户注册赠送积分活动 872825
科研通“疑难数据库(出版商)”最低求助积分说明 803382