Battery Health Estimation Based on Multidomain Transfer Learning

计算机科学 克里金 学习迁移 机器学习 人工智能 概念漂移 过程(计算) 健康状况 电池(电) 支持向量机 数据挖掘 试验数据 数据流挖掘 功率(物理) 物理 量子力学 程序设计语言 操作系统
作者
Hanmin Sheng,Biplob Ray,Shaben Kayamboo,Xintao Xu,Shafei Wang
出处
期刊:IEEE Transactions on Power Electronics [Institute of Electrical and Electronics Engineers]
卷期号:39 (4): 4758-4770 被引量:5
标识
DOI:10.1109/tpel.2023.3346335
摘要

Machine learning methods are expected to play a significant role in battery state of charge (SOH) estimation, leveraging their strengths in self-learning and nonlinear fitting. One of the key challenges in SOH estimation is the concept drift issue, which refers to changes in the data distribution between the training and test datasets. General machine learning methods assume that the training data shares similar characteristics with the test data. However, in SOH estimation tasks, differences in the environment and the characteristics of the battery itself can cause concept drift, which then impacts the model's effectiveness. As a result, many data-driven models that perform well in laboratory conditions struggle to be applied to other target batteries. This is a common and significant battery diagnosis technology issue, yet it remains unresolved. This article proposes a multidomain transfer Gaussian process regression (MTR-GPR) SOH estimation approach to address this issue. In this model, training data do not directly participate in the model's learning process. Instead, the MTR-GPR model extracts information from different datasets based on the distribution similarity. This method can fully use multisource battery ageing data while reducing the negative impact of distribution differences. Experimental results prove that MTR-GPR can make reliable SOH estimates with only 20% of target battery data. On the other hand, this method can provide the posterior probability distribution of the prediction results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小冯爱睡觉完成签到,获得积分10
刚刚
刚刚
刚刚
蓝天应助drtianyunhong采纳,获得10
2秒前
2秒前
2秒前
3秒前
岁月如歌完成签到 ,获得积分0
3秒前
Lin完成签到 ,获得积分10
5秒前
6秒前
无花果应助Xiexie采纳,获得10
7秒前
英吉利25发布了新的文献求助10
7秒前
快乐藤椒堡完成签到 ,获得积分10
7秒前
qczgzly完成签到,获得积分10
7秒前
梧桐的灯完成签到,获得积分10
9秒前
合欢完成签到,获得积分10
9秒前
头头啊头头啊完成签到,获得积分10
9秒前
9秒前
lll完成签到 ,获得积分10
10秒前
嘿嘿嘿发布了新的文献求助10
10秒前
10秒前
从此发布了新的文献求助10
10秒前
无花果应助qczgzly采纳,获得10
10秒前
baibai发布了新的文献求助30
11秒前
重要刺猬发布了新的文献求助10
12秒前
xmf发布了新的文献求助20
12秒前
12秒前
小菜完成签到 ,获得积分10
12秒前
共享精神应助优雅土豆采纳,获得10
14秒前
科研通AI6应助酱酱采纳,获得30
14秒前
14秒前
木木木完成签到,获得积分10
14秒前
15秒前
生动的半山完成签到,获得积分10
15秒前
koi完成签到,获得积分10
15秒前
15秒前
haiqin28发布了新的文献求助10
15秒前
JJJLX发布了新的文献求助10
17秒前
zy发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5640626
求助须知:如何正确求助?哪些是违规求助? 4754074
关于积分的说明 15010151
捐赠科研通 4798823
什么是DOI,文献DOI怎么找? 2564946
邀请新用户注册赠送积分活动 1523387
关于科研通互助平台的介绍 1483109