Deep Learning-Based Metasurface Design for Smart Cooling of Spacecraft

航天器 计算机科学 发射率 块(置换群论) 材料科学 电子工程 光学 航空航天工程 物理 工程类 几何学 数学
作者
Ayman Negm,Mohamed H. Bakr,Matiar M. R. Howlader,Shirook M. Ali
出处
期刊:Nanomaterials [MDPI AG]
卷期号:13 (23): 3073-3073 被引量:7
标识
DOI:10.3390/nano13233073
摘要

A reconfigurable metasurface constitutes an important block of future adaptive and smart nanophotonic applications, such as adaptive cooling in spacecraft. In this paper, we introduce a new modeling approach for the fast design of tunable and reconfigurable metasurface structures using a convolutional deep learning network. The metasurface structure is modeled as a multilayer image tensor to model material properties as image maps. We avoid the dimensionality mismatch problem using the operating wavelength as an input to the network. As a case study, we model the response of a reconfigurable absorber that employs the phase transition of vanadium dioxide in the mid-infrared spectrum. The feed-forward model is used as a surrogate model and is subsequently employed within a pattern search optimization process to design a passive adaptive cooling surface leveraging the phase transition of vanadium dioxide. The results indicate that our model delivers an accurate prediction of the metasurface response using a relatively small training dataset. The proposed patterned vanadium dioxide metasurface achieved a 28% saving in coating thickness compared to the literature while maintaining reasonable emissivity contrast at 0.43. Moreover, our design approach was able to overcome the non-uniqueness problem by generating multiple patterns that satisfy the design objectives. The proposed adaptive metasurface can potentially serve as a core block for passive spacecraft cooling applications. We also believe that our design approach can be extended to cover a wider range of applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘿嘿发布了新的文献求助20
1秒前
霸气南珍完成签到,获得积分20
2秒前
2秒前
段辉发布了新的文献求助10
2秒前
Rangi发布了新的文献求助10
2秒前
无名完成签到,获得积分20
3秒前
klh完成签到,获得积分10
4秒前
web1032020297发布了新的文献求助10
5秒前
Jasper应助hhhh采纳,获得10
5秒前
6秒前
健壮诗桃发布了新的文献求助10
6秒前
皮城小伙发布了新的文献求助50
8秒前
8秒前
8秒前
SciGPT应助liang采纳,获得10
8秒前
Jasper应助xdx采纳,获得10
10秒前
xd_c完成签到,获得积分10
11秒前
科研界星辰完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
小马甲应助干雅柏采纳,获得10
13秒前
你讲咩发布了新的文献求助10
14秒前
14秒前
14秒前
冷酷的尔云完成签到,获得积分20
14秒前
安静的瑾瑜完成签到 ,获得积分10
15秒前
FashionBoy应助YU采纳,获得10
16秒前
在水一方应助xu采纳,获得10
16秒前
优雅十八发布了新的文献求助10
16秒前
17秒前
阿兹卡班完成签到 ,获得积分10
18秒前
七七发布了新的文献求助10
19秒前
19秒前
FCC完成签到 ,获得积分10
23秒前
猫猫完成签到 ,获得积分10
23秒前
Dmx完成签到,获得积分10
24秒前
肉山完成签到,获得积分10
26秒前
不吃香菜完成签到,获得积分10
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5547045
求助须知:如何正确求助?哪些是违规求助? 4632776
关于积分的说明 14628345
捐赠科研通 4574346
什么是DOI,文献DOI怎么找? 2508221
邀请新用户注册赠送积分活动 1484799
关于科研通互助平台的介绍 1455881