Agent AI: Surveying the Horizons of Multimodal Interaction

具身认知 内含代理 计算机科学 人机交互 杠杆(统计) 自主代理人 过程(计算) 背景(考古学) 观点 人工智能 视觉艺术 操作系统 生物 古生物学 艺术
作者
Zane Durante,Qiuyuan Huang,Naoki Wake,Ran Gong,Jae Sung Park,Bidipta Sarkar,Rohan Taori,Yusuke Noda,Demetri Terzopoulos,Yejin Choi,Katsushi Ikeuchi,Hoi Vo,Li Fei-Fei,Jianfeng Gao
出处
期刊:Cornell University - arXiv 被引量:7
标识
DOI:10.48550/arxiv.2401.03568
摘要

Multi-modal AI systems will likely become a ubiquitous presence in our everyday lives. A promising approach to making these systems more interactive is to embody them as agents within physical and virtual environments. At present, systems leverage existing foundation models as the basic building blocks for the creation of embodied agents. Embedding agents within such environments facilitates the ability of models to process and interpret visual and contextual data, which is critical for the creation of more sophisticated and context-aware AI systems. For example, a system that can perceive user actions, human behavior, environmental objects, audio expressions, and the collective sentiment of a scene can be used to inform and direct agent responses within the given environment. To accelerate research on agent-based multimodal intelligence, we define "Agent AI" as a class of interactive systems that can perceive visual stimuli, language inputs, and other environmentally-grounded data, and can produce meaningful embodied actions. In particular, we explore systems that aim to improve agents based on next-embodied action prediction by incorporating external knowledge, multi-sensory inputs, and human feedback. We argue that by developing agentic AI systems in grounded environments, one can also mitigate the hallucinations of large foundation models and their tendency to generate environmentally incorrect outputs. The emerging field of Agent AI subsumes the broader embodied and agentic aspects of multimodal interactions. Beyond agents acting and interacting in the physical world, we envision a future where people can easily create any virtual reality or simulated scene and interact with agents embodied within the virtual environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mumufan完成签到,获得积分10
1秒前
wBw完成签到,获得积分10
2秒前
ycw7777完成签到,获得积分10
2秒前
hunajx完成签到,获得积分10
2秒前
思源应助秋之晓明采纳,获得10
4秒前
田様应助伶俐的如松采纳,获得10
4秒前
我是老大应助欣慰若采纳,获得10
6秒前
6秒前
啦啦完成签到,获得积分10
8秒前
小杜完成签到 ,获得积分10
8秒前
我的白起是国服完成签到 ,获得积分10
8秒前
hyperthermal1完成签到,获得积分10
11秒前
勤奋笑卉发布了新的文献求助10
12秒前
13秒前
sun发布了新的文献求助10
14秒前
15秒前
16秒前
whs发布了新的文献求助10
17秒前
大模型应助活力的小蝴蝶采纳,获得10
17秒前
17秒前
乐乐应助persist采纳,获得30
18秒前
19秒前
Erin完成签到 ,获得积分0
21秒前
若邻发布了新的文献求助10
21秒前
欣慰若发布了新的文献求助10
21秒前
whs完成签到,获得积分10
22秒前
sansronds发布了新的文献求助10
22秒前
AA1Z发布了新的文献求助10
24秒前
Patrick完成签到,获得积分10
24秒前
24秒前
邢夏之完成签到 ,获得积分10
25秒前
辣辣发布了新的文献求助10
26秒前
灵寒完成签到 ,获得积分10
28秒前
28秒前
persist发布了新的文献求助30
30秒前
洋芋饭应助大胆的茗茗采纳,获得10
31秒前
sansronds完成签到,获得积分10
32秒前
nan完成签到,获得积分10
34秒前
35秒前
张狗蛋发布了新的文献求助10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781024
求助须知:如何正确求助?哪些是违规求助? 3326463
关于积分的说明 10227359
捐赠科研通 3041675
什么是DOI,文献DOI怎么找? 1669535
邀请新用户注册赠送积分活动 799095
科研通“疑难数据库(出版商)”最低求助积分说明 758734