Observation of possible excitonic charge density waves and metal–insulator transitions in atomically thin semimetals

凝聚态物理 电荷密度波 物理 佩尔斯跃迁 角分辨光电子能谱 光电发射光谱学 相变 金属-绝缘体过渡 费米能级 电子 电子结构 超导电性 谱线 电阻率和电导率 量子力学
作者
Qiang Gao,Yang‐Hao Chan,Pengfei Jiao,Haiyang Chen,Shuaishuai Yin,Kanjanaporn Tangprapha,Yichen Yang,Xiaolong Li,Zhengtai Liu,Dawei Shen,Shengwei Jiang,Peng Chen
出处
期刊:Nature Physics [Nature Portfolio]
卷期号:20 (4): 597-602 被引量:8
标识
DOI:10.1038/s41567-023-02349-0
摘要

Charge density wave (CDW) is a collective quantum phenomenon with a charge modulation in solids1-2. Condensation of electron and hole pairs with finite momentum will lead to such an ordered state3-7. However, lattice symmetry breaking manifested as the softening of phonon modes can occur simultaneously, which makes it difficult to disentangle the origin of the transition8-14. Here, we report a condensed phase in low dimensional HfTe2, whereas angle-resolved photoemission spectroscopy (ARPES) measurements show a metal-insulator transition by lowering the temperature in single triatomic layer (TL) HfTe2. A full gap opening, renormalization of the bands, and emergence of replica bands at the M point are observed in the low temperatures, indicating formation of a CDW in the ground state.Raman spectroscopy shows no sign of lattice distortion within the detection limit. The results are corroborated by first-principles calculations, demonstrating the electronic origin of the CDW. By adding more layers, the phase transition is suppressed and completely destroyed at 3 TL because of the increased screening around the Fermi surface. Interestingly, a small amount of electron doping in 1 TL film during the growth significantly raises the transition temperature (TC), which is attributed to a reduced screening effect and a more balanced electron and hole carrier density. Our results indicate a CDW formation mechanism consistent with the excitonic insulator phase in low dimensional HfTe2 and open up opportunity for realization of novel quantum states based on exciton condensation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
金金发布了新的文献求助20
刚刚
朱光辉发布了新的文献求助10
刚刚
鸣笛应助整点薯条采纳,获得10
1秒前
李健的小迷弟应助a_hu采纳,获得10
2秒前
研友_nv2r4n发布了新的文献求助30
2秒前
谨慎的秋灵完成签到,获得积分10
2秒前
林英泽发布了新的文献求助10
2秒前
3秒前
丘比特应助WN采纳,获得10
4秒前
4秒前
5秒前
小V完成签到,获得积分20
5秒前
士心完成签到,获得积分10
5秒前
6秒前
6秒前
8564523完成签到,获得积分10
7秒前
7秒前
ZJeannine完成签到,获得积分10
8秒前
所所应助ccc采纳,获得30
8秒前
科研通AI5应助tianxiong采纳,获得10
8秒前
莫科关注了科研通微信公众号
9秒前
fanzhengyi发布了新的文献求助10
10秒前
beichuanheqi发布了新的文献求助10
11秒前
12秒前
正直敏发布了新的文献求助10
12秒前
13秒前
张雯思发布了新的文献求助10
13秒前
熊有鹏完成签到,获得积分20
14秒前
乐观的科研小狗完成签到,获得积分20
14秒前
15秒前
15秒前
SimonShaw完成签到,获得积分10
16秒前
平淡的中心完成签到,获得积分10
17秒前
17秒前
17秒前
充电宝应助研友_nv2r4n采纳,获得10
17秒前
19秒前
19秒前
mit完成签到 ,获得积分10
20秒前
dogontree发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
肥厚型心肌病新致病基因突变的筛选验证和功能研究 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4565745
求助须知:如何正确求助?哪些是违规求助? 3989282
关于积分的说明 12352360
捐赠科研通 3660690
什么是DOI,文献DOI怎么找? 2017320
邀请新用户注册赠送积分活动 1051693
科研通“疑难数据库(出版商)”最低求助积分说明 939350