清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Causal‐mechanical explanations in biology: Applying automated assessment for personalized learning in the science classroom

科学教育 数学教育 心理学 认知科学 计算机科学
作者
Moriah Ariely,Tanya Nazaretsky,Giora Alexandron
出处
期刊:Journal of Research in Science Teaching [Wiley]
被引量:1
标识
DOI:10.1002/tea.21929
摘要

Abstract One of the core practices of science is constructing scientific explanations. However, numerous studies have shown that constructing scientific explanations poses significant challenges to students. Proper assessment of scientific explanations is costly and time‐consuming, and teachers often do not have a clear definition of the educational goals for formulating scientific explanations. Consequently, teachers struggle to support their students in this process. It is hoped that recent advances in machine learning (ML) and its application to educational technologies can assist teachers and learners in analyzing student responses and providing automated formative feedback according to well‐defined pedagogical criteria. In this study, we present a method to automate the entire assessment‐feedback process. First, we developed a causal‐mechanical (CM)‐based grading rubric and applied it to student responses to two open‐ended items. Second, we used unsupervised ML tools to identify patterns in student responses. Those patterns enable the definition of “meta‐categories” of explanation types and the design of personalized feedback adapted to each category. Third, we designed an in‐class intervention with personalized formative feedback that matches the response patterns. We used natural language processing and ML algorithms to assess students' explanations and provide feedback. Findings from a controlled experiment demonstrated that a CM‐based grading scheme can be used to identify meaningful patterns and inform the design of formative feedback that promotes student ability to construct explanations in biology. We discuss possible implications for automated assessment and personalized teaching and learning of scientific writing in K‐12 science education.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
19秒前
tao完成签到 ,获得积分10
20秒前
枫树狐狸发布了新的文献求助10
26秒前
和谐的夏岚完成签到 ,获得积分10
33秒前
42秒前
小成完成签到 ,获得积分10
50秒前
思源应助ceeray23采纳,获得20
1分钟前
1分钟前
无悔完成签到 ,获得积分10
1分钟前
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
1分钟前
FashionBoy应助ceeray23采纳,获得20
1分钟前
莓卡卡的小葡萄完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
tszjw168完成签到 ,获得积分0
1分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
Shicheng完成签到,获得积分10
2分钟前
文献搬运工完成签到 ,获得积分10
2分钟前
自觉安荷完成签到 ,获得积分10
2分钟前
可爱沛蓝完成签到 ,获得积分10
2分钟前
2分钟前
uppercrusteve完成签到,获得积分10
2分钟前
2分钟前
Wuyx完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
归尘应助科研通管家采纳,获得10
3分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5222490
求助须知:如何正确求助?哪些是违规求助? 4395265
关于积分的说明 13681319
捐赠科研通 4258877
什么是DOI,文献DOI怎么找? 2337012
邀请新用户注册赠送积分活动 1334466
关于科研通互助平台的介绍 1289587