亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning-Based Detection of Parkinson’s Disease From Resting-State EEG: A Multi-Center Study

脑电图 特征提取 人工智能 特征选择 计算机科学 模式识别(心理学) 逻辑回归 特征(语言学) 单变量 预处理器 管道(软件) 机器学习 医学 多元统计 精神科 哲学 语言学 程序设计语言
作者
Anna Kurbatskaya,Alberto Jaramillo‐Jimenez,John Fredy Ochoa-Gómez,Kolbjørn Brønnick,Álvaro Fernández-Quilez
标识
DOI:10.1109/embc40787.2023.10340700
摘要

Resting-state EEG (rs-EEG) has been demonstrated to aid in Parkinson's disease (PD) diagnosis. In particular, the power spectral density (PSD) of low-frequency bands (δ and θ) and high-frequency bands (α and β) has been shown to be significantly different in patients with PD as compared to subjects without PD (non-PD). However, rs-EEG feature extraction and the interpretation thereof can be time-intensive and prone to examiner variability. Machine learning (ML) has the potential to automatize the analysis of rs-EEG recordings and provides a supportive tool for clinicians to ease their workload. In this work, we use rs-EEG recordings of 84 PD and 85 non-PD subjects pooled from four datasets obtained at different centers. We propose an end-to-end pipeline consisting of preprocessing, extraction of PSD features from clinically-validated frequency bands, and feature selection. Following, we assess the classification ability of the features via ML algorithms to stratify between PD and non-PD subjects. Further, we evaluate the effect of feature harmonization, given the multi-center nature of the datasets. Our validation results show, on average, an improvement in PD detection ability (69.6% vs. 75.5% accuracy) by logistic regression when harmonizing the features and performing univariate feature selection (k = 202 features). Our final results show an average global accuracy of 72.2% with balanced accuracy results for all the centers included in the study: 60.6%, 68.7%, 77.7%, and 82.2%, respectively.Clinical relevance- We present an end-to-end pipeline to extract clinically relevant features from rs-EEG recordings that can facilitate the analysis and detection of PD. Further, we provide an ML system that shows a good performance in detecting PD, even in the presence of centers with different acquisition protocols. Our results show the relevance of harmonizing features and provide a good starting point for future studies focusing on rs-EEG analysis and multi-center data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Lee完成签到,获得积分10
3秒前
科目三应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得100
5秒前
6秒前
Lee发布了新的文献求助10
7秒前
asd1576562308完成签到 ,获得积分10
11秒前
克莱芒发布了新的文献求助10
12秒前
16秒前
22秒前
闪闪蜜粉完成签到 ,获得积分10
27秒前
HeNeArKrXeRn完成签到,获得积分10
28秒前
44秒前
50秒前
mcl完成签到,获得积分10
55秒前
魔幻的花生完成签到,获得积分20
57秒前
在水一方应助阿亮采纳,获得30
1分钟前
1分钟前
qqJing完成签到,获得积分10
1分钟前
自由飞阳完成签到,获得积分10
2分钟前
2分钟前
2分钟前
wll1091完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
小岩完成签到 ,获得积分10
3分钟前
3分钟前
suer发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
CipherSage应助suer采纳,获得10
3分钟前
gxmu6322完成签到,获得积分10
3分钟前
汉德萌多林完成签到,获得积分10
3分钟前
4分钟前
小哈完成签到 ,获得积分10
4分钟前
阿亮完成签到,获得积分20
4分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Fast method for calculating cutoff frequencies in single-mode fibres with arbitrary index profiles 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833728
求助须知:如何正确求助?哪些是违规求助? 3376164
关于积分的说明 10492289
捐赠科研通 3095753
什么是DOI,文献DOI怎么找? 1704694
邀请新用户注册赠送积分活动 820063
科研通“疑难数据库(出版商)”最低求助积分说明 771792