ICGNet: An intensity-controllable generation network based on covering learning for face attribute synthesis

面子(社会学概念) 计算机科学 强度(物理) 人工智能 光学 物理 社会科学 社会学
作者
Xin Ning,He Feng,Xiaoli Dong,Weijun Li,Fayadh Alenezi,Prayag Tiwari
出处
期刊:Information Sciences [Elsevier BV]
卷期号:660: 120130-120130 被引量:8
标识
DOI:10.1016/j.ins.2024.120130
摘要

Face-attribute synthesis is a typical application of neural network technology. However, most current methods suffer from the problem of uncontrollable attribute intensity. In this study, we proposed a novel intensity-controllable generation network (ICGNet) based on covering learning for face attribute synthesis. Specifically, it includes an encoder module based on the principle of homology continuity between homologous samples to map different facial images onto the face feature space, which constructs sufficient and effective representation vectors by extracting the input information from different condition spaces. It then models the relationships between attribute instances and representational vectors in space to ensure accurate synthesis of the target attribute and complete preservation of the irrelevant region. Finally, the progressive changes in the facial attributes by applying different intensity constraints to the representation vectors. ICGNet achieves intensity-controllable face editing compared to other methods by extracting sufficient and effective representation features, exploring and transferring attribute relationships, and maintaining identity information. The source code is available at https://github.com/kllaodong/-ICGNet. We designed a new encoder module to map face images of different condition spaces into face feature space to obtain sufficient and effective face feature representation. Based on feature extraction, we proposed a novel Intensity-Controllable Generation Network (ICGNet), which can realize face attribute synthesis with continuous intensity control while maintaining identity and semantic information. The quantitative and qualitative results showed that the performance of ICGNet is superior to current advanced models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优秀的千柳完成签到,获得积分10
刚刚
开朗以亦发布了新的文献求助10
1秒前
jichups完成签到,获得积分10
1秒前
2秒前
2秒前
安静的语柳完成签到,获得积分10
3秒前
哈拉斯完成签到,获得积分10
3秒前
彪壮的绮烟完成签到,获得积分10
4秒前
豆豆欢欢乐完成签到 ,获得积分10
4秒前
renshiq完成签到,获得积分10
4秒前
allrubbish发布了新的文献求助10
6秒前
艾瑞克完成签到,获得积分10
6秒前
深情海秋完成签到,获得积分10
7秒前
Tttting发布了新的文献求助10
7秒前
一只想做科研的狗完成签到,获得积分10
8秒前
苦咖啡行僧完成签到 ,获得积分10
8秒前
9秒前
张小度ever完成签到 ,获得积分10
9秒前
9秒前
嘉芮完成签到,获得积分10
9秒前
Ava应助Parsifal采纳,获得10
9秒前
LGH完成签到 ,获得积分10
10秒前
vera完成签到,获得积分10
10秒前
活泼新儿完成签到 ,获得积分10
11秒前
非而者厚应助哈哈采纳,获得10
11秒前
hou123456完成签到,获得积分10
12秒前
海茵发布了新的文献求助10
12秒前
天天快乐应助余生采纳,获得10
14秒前
321654发布了新的文献求助10
15秒前
lshao完成签到 ,获得积分10
15秒前
16秒前
Cheng完成签到 ,获得积分10
16秒前
一颗西柚完成签到 ,获得积分10
17秒前
罗沫沫完成签到,获得积分10
18秒前
英姑应助moya采纳,获得10
19秒前
小林神完成签到,获得积分10
19秒前
柠檬百香果完成签到,获得积分10
20秒前
DaSheng发布了新的文献求助10
20秒前
su完成签到 ,获得积分10
21秒前
321完成签到,获得积分10
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782897
求助须知:如何正确求助?哪些是违规求助? 3328185
关于积分的说明 10235295
捐赠科研通 3043240
什么是DOI,文献DOI怎么找? 1670468
邀请新用户注册赠送积分活动 799718
科研通“疑难数据库(出版商)”最低求助积分说明 759033