Graph signal processing is combined with deep learning for detection of damaged wind turbine blades

计算机科学 人工智能 图形 模式识别(心理学) 频域 计算机视觉 理论计算机科学
作者
Xiang Pan,Chunjun Liang
出处
期刊:Journal of the Acoustical Society of America [Acoustical Society of America]
卷期号:154 (4_supplement): A79-A79
标识
DOI:10.1121/10.0022864
摘要

For early warning the damaged blade of wind turbines, an emission noise processing framework is proposed based on combination of Graph signal processing and Deep Learning. A microphone array is utilized to receive the noise emitted by the wind turbine blades. The weak abnormal signal from the damaged blade is enhanced by beamforming techniques. The enhanced signal is transformed into the graph domain by Graph Fourier Transform, from which the Mel filter bank features are extracted as inputs of a Multi-scale Feature Aggregation Conformer (MFA-Conformer) for damage detection. The MFA-Conformer combines Transformers and convolution neural networks (CNNs) to capture global and local features from the frequency or Graph domain. And the multi-stage aggregation strategy is utilized to exploit hierarchical context information. The reduction in the computational cost is achieved in the CNNs-based damage detection due to the real-valued features extracted from graph domain. The MFA-Conformer neural network is trained on the dataset which is created by applying data augmentation to the training samples. With the Mel filter bank features extracted from the frequency and graph domains, the MFA-Conformer neural network performs well in the five wind-farm data tests, with 2.55 % improvement in accuracy over the residual networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
扫地888完成签到 ,获得积分10
刚刚
北城完成签到 ,获得积分10
刚刚
逆流的鱼完成签到 ,获得积分10
1秒前
风信子完成签到,获得积分10
1秒前
文艺的青旋完成签到 ,获得积分10
4秒前
要笑cc完成签到,获得积分10
15秒前
牛奶面包完成签到 ,获得积分10
16秒前
宣宣宣0733完成签到,获得积分10
17秒前
胡质斌完成签到,获得积分10
19秒前
经纲完成签到 ,获得积分0
19秒前
Wang发布了新的文献求助10
20秒前
余味应助科研通管家采纳,获得10
21秒前
豆花浮元子完成签到 ,获得积分10
21秒前
余味应助科研通管家采纳,获得10
21秒前
21秒前
ARIA完成签到 ,获得积分10
22秒前
朱比特完成签到,获得积分10
25秒前
BINBIN完成签到 ,获得积分10
30秒前
panpanliumin完成签到,获得积分0
33秒前
34秒前
35秒前
38秒前
Balance Man完成签到 ,获得积分10
40秒前
eternal_dreams完成签到 ,获得积分10
49秒前
janejane发布了新的文献求助10
51秒前
lishui完成签到 ,获得积分10
53秒前
青牛完成签到,获得积分10
54秒前
steven完成签到 ,获得积分10
55秒前
janejane完成签到 ,获得积分20
1分钟前
科科通通完成签到,获得积分10
1分钟前
qiancib202完成签到,获得积分10
1分钟前
hahaha完成签到,获得积分10
1分钟前
鲲鹏完成签到 ,获得积分10
1分钟前
onevip完成签到,获得积分0
1分钟前
手帕很忙完成签到,获得积分10
1分钟前
西山菩提完成签到,获得积分10
1分钟前
Ayn完成签到 ,获得积分10
1分钟前
科研通AI5应助雅香采纳,获得10
1分钟前
ESC惠子子子子子完成签到 ,获得积分10
1分钟前
忒寒碜完成签到,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792563
求助须知:如何正确求助?哪些是违规求助? 3336787
关于积分的说明 10282162
捐赠科研通 3053570
什么是DOI,文献DOI怎么找? 1675652
邀请新用户注册赠送积分活动 803629
科研通“疑难数据库(出版商)”最低求助积分说明 761481