Empowering the Capillary of the Urban Daily Commute: Battery Deployment Analysis for the Locker-Based E-bike Battery Swapping

软件部署 电池(电) 排队论 计算机科学 服务(商务) 出租车 服务质量 模拟 运筹学 运输工程 计算机网络 工程类 业务 功率(物理) 营销 物理 操作系统 量子力学
作者
Xiaolei Xie,Xu Dai,Zhi Pei
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:58 (1): 176-197 被引量:1
标识
DOI:10.1287/trsc.2022.0132
摘要

In densely populated Asian countries, e-bikes have become a new supernova in daily urban transportation. To facilitate the operations of e-bike-based mobility, the present paper studies the management of the battery deployment for the e-bike battery-swapping system, where the unique features of e-bike riding are considered. Given the pedal-assisted mode, e-bike users could abandon waiting and return to the station later on without too much range anxiety. However, because of the time-varying nature of the customer arrival and the complicated user behaviors, the battery quantity at each station is altered to guarantee the designated service level. However, little research has been done on the operations management of the e-bike battery-swapping system. To bridge the gap, we propose a nonstationary queueing network model to characterize the customer behaviors during the battery-swapping service. Then we develop a closed-form delayed infinite-server fluid approximation for the battery deployment of the one-time-loop scenario under various quality-of-service targets. In addition, we handle the infinite-time-loop scenario with the simulation-based iterative staffing algorithm. In the simulation study, we observe that the proposed battery deployment algorithms can help stabilize the system performance in terms of abandonment probability and expected delay in the face of time-varying demand and complex customer behaviors. Moreover, we reveal that the number of return loops correlates with the service level targets on the battery deployment decision. Furthermore, a time gap exists between the demand and the optimal battery deployment, making proactive battery management in the system possible. Funding: This work was supported by the National Natural Science Foundation of China [Grants 72271222, 71871203, 71872093, 72271137, L1924063], and the National Social Science Fund of China [Grant 21&ZD128]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.0132 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
窝窝完成签到,获得积分20
刚刚
1秒前
Joyful完成签到,获得积分10
1秒前
刘晓宇发布了新的文献求助10
1秒前
2秒前
江屿发布了新的文献求助10
3秒前
3秒前
研友_VZG7GZ应助kd采纳,获得10
4秒前
风之子完成签到,获得积分10
5秒前
未来的闫院士完成签到,获得积分20
5秒前
5秒前
狂野的勒完成签到,获得积分10
5秒前
科目三应助明亮小天鹅采纳,获得30
6秒前
左岸SUPER完成签到,获得积分10
6秒前
隐形曼青应助叶云飞采纳,获得10
6秒前
zyt完成签到,获得积分20
6秒前
大宝慧完成签到,获得积分20
6秒前
大黄发布了新的文献求助10
7秒前
chenhailin发布了新的文献求助10
7秒前
77关闭了77文献求助
7秒前
7秒前
lanxinyue完成签到,获得积分0
8秒前
辛勤的刺猬完成签到 ,获得积分10
8秒前
8秒前
Akim应助王小西采纳,获得10
8秒前
研友_VZG7GZ应助H1998采纳,获得24
8秒前
Ale完成签到,获得积分20
8秒前
9秒前
9秒前
hh哈哈发布了新的文献求助10
9秒前
huahua应助万英雄采纳,获得10
9秒前
zzzz完成签到,获得积分10
10秒前
香蕉觅云应助认真的海豚采纳,获得10
10秒前
纸鸢完成签到,获得积分10
10秒前
Islet1810完成签到,获得积分10
10秒前
王晓蕾发布了新的文献求助10
10秒前
11秒前
12秒前
方之双发布了新的文献求助10
12秒前
jassonz关注了科研通微信公众号
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
English language teaching materials : theory and practice 200
Parallel Optimization 200
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835595
求助须知:如何正确求助?哪些是违规求助? 3377959
关于积分的说明 10501323
捐赠科研通 3097529
什么是DOI,文献DOI怎么找? 1705876
邀请新用户注册赠送积分活动 820756
科研通“疑难数据库(出版商)”最低求助积分说明 772226