A Lightweight Transformer Network for Hyperspectral Image Classification

计算机科学 过度拟合 变压器 高光谱成像 卷积神经网络 特征提取 人工智能 计算 像素 内存占用 模式识别(心理学) 人工神经网络 算法 物理 量子力学 电压 操作系统
作者
Xuming Zhang,Yuanchao Su,Lianru Gao,Lorenzo Bruzzone,Xingfa Gu,Qingjiu Tian
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:22
标识
DOI:10.1109/tgrs.2023.3297858
摘要

Transformer is a powerful tool for capturing long-range dependencies and has shown impressive performance in hyperspectral image (HSI) classification. However, such power comes with a heavy memory footprint and huge computation burden. In this paper, we propose two types of lightweight self-attention modules (a channel lightweight multi-head self-attention module and a position lightweight multi-head self-attention module) to reduce both memory and computation while associating each pixel or channel with global information. Moreover, we discover that transformers are ineffective in explicitly extracting local and multi-scale features due to the fixed input size and tend to overfit when dealing with a small number of training samples. Therefore, a lightweight transformer (LiT) network, built with the proposed lightweight self-attention modules, is presented. LiT adopts convolutional blocks to explicitly extract local information in early layers and employs transformers to capture long-range dependencies in deep layers. Furthermore, we design a controlled multi-class stratified sampling strategy to generate appropriately sized input data, ensure balanced sampling, and reduce the overlap of feature extraction regions between training and test samples. With appropriate training data, convolutional tokenization, and lightweight transformers, LiT mitigates overfitting and enjoys both high computational efficiency and good performance. Experimental results on several HSI datasets verify the effectiveness of our design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
傅三毒完成签到 ,获得积分20
1秒前
孤独天薇发布了新的文献求助20
1秒前
Flexy发布了新的文献求助10
1秒前
minghanl完成签到,获得积分10
2秒前
haha9haha完成签到,获得积分10
2秒前
Krystal完成签到,获得积分10
3秒前
方方方方方完成签到,获得积分20
3秒前
本色小杆子完成签到 ,获得积分10
4秒前
4秒前
re发布了新的文献求助10
4秒前
Bill完成签到 ,获得积分10
5秒前
慕容雅柏完成签到 ,获得积分10
6秒前
6秒前
枫兮新泷丶应助林早上采纳,获得10
6秒前
6秒前
孔大漂亮发布了新的文献求助10
6秒前
7秒前
默默白开水完成签到 ,获得积分10
7秒前
7秒前
酷波er应助tangtang采纳,获得10
8秒前
香蕉觅云应助samara采纳,获得10
8秒前
个性的翠芙完成签到,获得积分10
8秒前
8秒前
学术纣王完成签到,获得积分10
9秒前
9秒前
请问完成签到,获得积分10
9秒前
游泳的龙发布了新的文献求助10
9秒前
嗳7完成签到 ,获得积分10
9秒前
10秒前
10秒前
NexusExplorer应助Flexy采纳,获得10
10秒前
10秒前
小彤完成签到 ,获得积分10
10秒前
biyeshunli发布了新的文献求助10
11秒前
种子完成签到 ,获得积分10
11秒前
326503177发布了新的文献求助200
12秒前
12秒前
ww发布了新的文献求助10
13秒前
小黄油完成签到,获得积分10
13秒前
daniel完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3938310
求助须知:如何正确求助?哪些是违规求助? 3483936
关于积分的说明 11026262
捐赠科研通 3213930
什么是DOI,文献DOI怎么找? 1776331
邀请新用户注册赠送积分活动 862511
科研通“疑难数据库(出版商)”最低求助积分说明 798507