A Lightweight Transformer Network for Hyperspectral Image Classification

计算机科学 过度拟合 变压器 高光谱成像 卷积神经网络 特征提取 人工智能 计算 像素 内存占用 模式识别(心理学) 人工神经网络 算法 物理 量子力学 电压 操作系统
作者
Xuming Zhang,Yuanchao Su,Lianru Gao,Lorenzo Bruzzone,Xingfa Gu,Qingjiu Tian
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:22
标识
DOI:10.1109/tgrs.2023.3297858
摘要

Transformer is a powerful tool for capturing long-range dependencies and has shown impressive performance in hyperspectral image (HSI) classification. However, such power comes with a heavy memory footprint and huge computation burden. In this paper, we propose two types of lightweight self-attention modules (a channel lightweight multi-head self-attention module and a position lightweight multi-head self-attention module) to reduce both memory and computation while associating each pixel or channel with global information. Moreover, we discover that transformers are ineffective in explicitly extracting local and multi-scale features due to the fixed input size and tend to overfit when dealing with a small number of training samples. Therefore, a lightweight transformer (LiT) network, built with the proposed lightweight self-attention modules, is presented. LiT adopts convolutional blocks to explicitly extract local information in early layers and employs transformers to capture long-range dependencies in deep layers. Furthermore, we design a controlled multi-class stratified sampling strategy to generate appropriately sized input data, ensure balanced sampling, and reduce the overlap of feature extraction regions between training and test samples. With appropriate training data, convolutional tokenization, and lightweight transformers, LiT mitigates overfitting and enjoys both high computational efficiency and good performance. Experimental results on several HSI datasets verify the effectiveness of our design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超薄也是距离感完成签到,获得积分10
刚刚
1111111111111完成签到,获得积分10
刚刚
丘比特应助PHI采纳,获得10
2秒前
小蘑菇应助qy采纳,获得10
3秒前
科研通AI5应助俊秀的思山采纳,获得30
3秒前
虫脆完成签到,获得积分10
3秒前
wh雨完成签到,获得积分10
4秒前
十六月亮完成签到,获得积分10
6秒前
白嫖论文发布了新的文献求助10
8秒前
毅诚菌完成签到,获得积分10
9秒前
虫脆关注了科研通微信公众号
11秒前
11秒前
优雅莞应助刘兴洋采纳,获得50
12秒前
13秒前
13秒前
至乐无乐完成签到 ,获得积分10
14秒前
14秒前
wh雨发布了新的文献求助10
15秒前
w吴栋臣发布了新的文献求助10
17秒前
一定长发布了新的文献求助10
17秒前
18秒前
美好斓应助zar采纳,获得100
18秒前
OhHH完成签到 ,获得积分10
20秒前
21秒前
心灵美的元彤完成签到,获得积分10
21秒前
22秒前
silence完成签到,获得积分10
22秒前
23秒前
小白白完成签到 ,获得积分10
23秒前
25秒前
浅风发布了新的文献求助10
27秒前
28秒前
胖子完成签到,获得积分10
29秒前
lllroy完成签到,获得积分10
30秒前
31秒前
jadexu完成签到,获得积分10
31秒前
一定长完成签到,获得积分10
31秒前
31秒前
认真大雁完成签到 ,获得积分10
32秒前
梁海萍发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5191054
求助须知:如何正确求助?哪些是违规求助? 4374552
关于积分的说明 13621498
捐赠科研通 4228481
什么是DOI,文献DOI怎么找? 2319295
邀请新用户注册赠送积分活动 1317858
关于科研通互助平台的介绍 1267898