E3D: An efficient 3D CNN for the recognition of dairy cow's basic motion behavior

计算机科学 卷积(计算机科学) 运动(物理) 滤波器(信号处理) GSM演进的增强数据速率 人工智能 过程(计算) 频道(广播) 模式识别(心理学) 计算机视觉 人工神经网络 电信 操作系统
作者
Yunfei Wang,Rong Li,Zheng Wang,Zhixin Hua,Yitao Jiao,Yuanchao Duan,Huaibo Song
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:205: 107607-107607 被引量:33
标识
DOI:10.1016/j.compag.2022.107607
摘要

Accurately and rapidly recognizing the basic motion behaviors (lying, standing, walking, drinking, and feeding) is helpful in better understanding the health status of dairy cows. Existing algorithms cannot effectively deal with the problem of large parameters, thus difficult to load and use on portable edge devices. In this paper, an E3D (Efficient 3D CNN) algorithm was proposed to solve the problems of existing algorithms. Based on the 3D convolution combined with Dwise (Depthwise Separable Convolution) in the SandGlass-3D module, E3D could directly and efficiently process the Spatial-Temporal information of the video. The ECA (Efficient Channel Attention) was introduced to filter channel information for accuracy improvement. Experimental results showed that the precision, recall, parameters, and FLOPs of the E3D were 98.17 %, 97.08 %, 2.35 M, and 0.98 G, respectively. The accuracy of E3D was 7.29 %, 4.06 %, 5.31 %, and 12.46 % higher than C3D, I3D, P3D, and S3D, respectively. The parameters were reduced by 11.95 M, 25.73 M, and 280.65 M compared with the Improved Renext network, ACTION-Net, and C3D-ConvLSTM. It indicated that the proposed network was suitable for accurately and rapidly recognizing the basic motion behaviors of dairy cows in natural environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
抱米花完成签到,获得积分20
2秒前
2秒前
2秒前
5秒前
JamesPei应助香香采纳,获得10
5秒前
zzzzzz发布了新的文献求助10
7秒前
风趣的紫菜完成签到,获得积分20
8秒前
10秒前
独特觅儿完成签到,获得积分10
10秒前
一颗咸蛋黄完成签到,获得积分10
11秒前
11秒前
12秒前
直率的鱼发布了新的文献求助10
13秒前
sxlmm0924发布了新的文献求助10
14秒前
15秒前
16秒前
17秒前
lisa43应助科研通管家采纳,获得10
19秒前
pluto应助科研通管家采纳,获得10
19秒前
大模型应助科研通管家采纳,获得10
19秒前
共享精神应助科研通管家采纳,获得10
19秒前
Ava应助科研通管家采纳,获得10
19秒前
19秒前
风清扬应助科研通管家采纳,获得30
19秒前
Son4904应助科研通管家采纳,获得10
19秒前
Owen应助科研通管家采纳,获得10
20秒前
hejunhui应助科研通管家采纳,获得10
20秒前
传奇3应助科研通管家采纳,获得10
20秒前
田様应助科研通管家采纳,获得10
20秒前
weifengzhong应助科研通管家采纳,获得10
20秒前
研友_VZG7GZ应助科研通管家采纳,获得10
20秒前
20秒前
iNk应助科研通管家采纳,获得20
20秒前
欢喜橙子应助科研通管家采纳,获得10
20秒前
xuaotian完成签到,获得积分10
21秒前
zyqy完成签到,获得积分10
21秒前
一往之前发布了新的文献求助10
22秒前
CodeCraft应助直率的鱼采纳,获得10
23秒前
海绵宝宝发布了新的文献求助10
23秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
求 5G-Advanced NTN空天地一体化技术 pdf版 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4065145
求助须知:如何正确求助?哪些是违规求助? 3603692
关于积分的说明 11445615
捐赠科研通 3326328
什么是DOI,文献DOI怎么找? 1828724
邀请新用户注册赠送积分活动 898882
科研通“疑难数据库(出版商)”最低求助积分说明 819390