超参数
人工神经网络
随机森林
支持向量机
秩(图论)
集合(抽象数据类型)
人工智能
机器学习
交叉验证
计算机科学
模式识别(心理学)
数学
组合数学
程序设计语言
作者
Jan Horňas,Jiří Běhal,Petr Homola,Sascha Senck,Martin Holzleitner,Norica Godja,Zsolt Pásztor,Bálint Hegedüs,Radek Doubrava,Roman Růžek,Lucie Petrusová
标识
DOI:10.1016/j.ijfatigue.2022.107483
摘要
In this work, a framework based on the machine learning (ML) approach and Spearman’s rank correlation analysis is introduced as an effective instrument to solve the influence of defects detected by micro-computed tomography (μCT) method, and stress amplitude on the fatigue life performance of AM Ti-6Al-4V. Artificial neural network (ANN), random forest regressor (RFR) and support vector regressor (SVR) models are implemented and optimized. The optimization is performed on training set by tuning the hyperparameters and parameters using the leave-one-out cross validation (LOOCV) technique. The results present comparison between predicted and experimental results and validate the proposed framework.
科研通智能强力驱动
Strongly Powered by AbleSci AI