Computational Predictions of Nonclinical Pharmacokinetics at the Drug Design Stage

可解释性 人工智能 计算机科学 药代动力学 药物与药物的相互作用 药物发现 机器学习 均方预测误差 差异(会计) 模式识别(心理学) 生物信息学 药理学 医学 生物 会计 业务
作者
Raya Stoyanova,Paul Maximilian Katzberger,Leonid Komissarov,Aous Khadhraoui,Lisa Sach-Peltason,Katrin Groebke Zbinden,Torsten Schindler,Nenad Manevski
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (2): 442-458 被引量:22
标识
DOI:10.1021/acs.jcim.2c01134
摘要

Although computational predictions of pharmacokinetics (PK) are desirable at the drug design stage, existing approaches are often limited by prediction accuracy and human interpretability. Using a discovery data set of mouse and rat PK studies at Roche (9,685 unique compounds), we performed a proof-of-concept study to predict key PK properties from chemical structure alone, including plasma clearance (CLp), volume of distribution at steady-state (Vss), and oral bioavailability (F). Ten machine learning (ML) models were evaluated, including Single-Task, Multitask, and transfer learning approaches (i.e., pretraining with in vitro data). In addition to prediction accuracy, we emphasized human interpretability of outcomes, especially the quantification of uncertainty, applicability domains, and explanations of predictions in terms of molecular features. Results show that intravenous (IV) PK properties (CLp and Vss) can be predicted with good precision (average absolute fold error, AAFE of 1.96–2.84 depending on data split) and low bias (average fold error, AFE of 0.98–1.36), with AutoGluon, Gaussian Process Regressor (GP), and ChemProp displaying the best performance. Driven by higher complexity of oral PK studies, predictions of F were more challenging, with the best AAFE values of 2.35–2.60 and higher overprediction bias (AFE of 1.45–1.62). Multi-Task approaches and pretraining of ChemProp neural networks with in vitro data showed similar precision to Single-Task models but helped reduce the bias and increase correlations between observations and predictions. A combination of GP-computed prediction variance, molecular clustering, and dimensionality-reduction provided valuable quantitative insights into prediction uncertainty and applicability domains. SHAPley Additive exPlanations (SHAPs) highlighted molecular features contributing to prediction outcomes of Vss, providing explanations that could aid drug design. Combined results show that computational predictions of PK are feasible at the drug design stage, with several ML technologies converging to successfully leverage historical PK data sets. Further studies are needed to unlock the full potential of this approach, especially with respect to data set sizes and quality, transfer learning between in vitro and in vivo data sets, model-independent quantification of uncertainty, and explainability of predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
少艾发布了新的文献求助10
刚刚
Kevin完成签到,获得积分10
2秒前
kyt完成签到 ,获得积分10
3秒前
heiye完成签到,获得积分10
5秒前
大模型应助Caroline采纳,获得10
7秒前
归海一刀完成签到,获得积分10
8秒前
Zoe完成签到,获得积分10
8秒前
DingShicong完成签到 ,获得积分10
9秒前
freeway完成签到,获得积分10
12秒前
zch曹县66完成签到,获得积分10
15秒前
大卫戴完成签到 ,获得积分10
15秒前
刘七七努力搞科研完成签到 ,获得积分10
18秒前
爽哥完成签到,获得积分10
20秒前
21秒前
少艾完成签到 ,获得积分10
22秒前
Alex完成签到,获得积分10
24秒前
Dr.Dream完成签到,获得积分10
24秒前
jackhlj完成签到,获得积分10
24秒前
Thunnus001完成签到 ,获得积分10
25秒前
平凡完成签到,获得积分10
25秒前
xiaoxie完成签到 ,获得积分10
26秒前
casino应助研友_LN32Mn采纳,获得10
28秒前
乐乐应助allofme采纳,获得10
30秒前
大胆的忆寒完成签到,获得积分10
30秒前
干净砖头完成签到,获得积分10
34秒前
Karvs完成签到,获得积分10
34秒前
吱吱熊sama完成签到,获得积分10
36秒前
wsqg123完成签到,获得积分10
36秒前
yzp111发布了新的文献求助20
36秒前
阔达的水壶完成签到 ,获得积分10
40秒前
40秒前
Eleven完成签到,获得积分10
41秒前
勤恳风华完成签到,获得积分10
42秒前
阿苇完成签到 ,获得积分10
42秒前
龙在天涯完成签到,获得积分0
42秒前
胖墩儿驾到完成签到,获得积分10
43秒前
风生完成签到,获得积分10
43秒前
妍妍YRrrrrrrr完成签到,获得积分10
44秒前
allofme发布了新的文献求助10
47秒前
英俊枫完成签到,获得积分10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4554005
求助须知:如何正确求助?哪些是违规求助? 3982941
关于积分的说明 12329294
捐赠科研通 3652896
什么是DOI,文献DOI怎么找? 2012125
邀请新用户注册赠送积分活动 1047151
科研通“疑难数据库(出版商)”最低求助积分说明 935657