Comprehensive review on machine learning methodologies for modeling dye removal processes in wastewater

可重用性 计算机科学 过程(计算) 透明度(行为) 选择(遗传算法) 软件 斯科普斯 工艺工程 工业工程 机器学习 生化工程 工程类 操作系统 程序设计语言 法学 计算机安全 梅德林 政治学
作者
Suraj Kumar Bhagat,Karl Ezra Pilario,Olusola Emmanuel Babalola,Tiyasha Tiyasha,Muhammad Yaqub,Chijioke Elijah Onu,Konstantina Pyrgaki,Mayadah W. Falah,Ali H. Jawad,Dina A. Yaseen,Noureddine Barka,Zaher Mundher Yaseen‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:385: 135522-135522 被引量:64
标识
DOI:10.1016/j.jclepro.2022.135522
摘要

A wide range of dyes are being disposed in water bodies from several industrial runoff and the quantity is rapidly increasing over the years. From an environmental safety point of view, it is urgent to improve the removal process of dyes. It is important to understand the stochastic and highly redundant behavior of the process of dye removal (DR) in wastewater treatment. This leads to better utilization of Machine Learning (ML) models for both optimization as well as prediction of the DR process efficiency. In this review, 200 papers (Years, 2006–2021) have been systematically reviewed from the Web of Science and Scopus-indexed journals, covering a total of 84 journals. All applied ML models have been thoroughly studied in the review and analyzed in terms of their architecture setup, hyper-parameters selection, performance, advantages, and disadvantages. A wide range of optimization methods for hyper-parameters tuning were analyzed and discussed scientifically. Explicit information about the data sizes, splitting structure for training-validation-testing along with input and output selection approaches have been logically reviewed and discussed. Data availability, transparency, and reusability have been reported adequately. Various software for data-driven modeling have been discussed with their pros and cons. Trends in statistical evaluators (among about 60 types) have been discussed with their pros and cons including their sensitivity with the data fluctuations. Moreover, the most popular performance metrics have reported. In addition, the DR mechanism has reviewed and discussed inclusively. Extensive media used for the decolorization were discussed thoroughly, including their physical and chemical characteristics, along with feasibility and equilibrium data based on Langmuir model. The cost of the applied media in the decolorization process reported adequately. Finally, the research gap and future road map of the next 5 years, which bridge the gap of the domain are scientifically drafted along with the limitations. This critical review not only provides the appraisal of growth of DR research integrated with ML in the last couple of decades but also scouts the potential studies where all experimental, chemical and modeling processes should be taken under consideration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
6秒前
together73W完成签到 ,获得积分10
6秒前
牛哥完成签到 ,获得积分10
8秒前
老西瓜完成签到,获得积分10
8秒前
10秒前
chen发布了新的文献求助10
11秒前
12秒前
15秒前
蹦比欸比关注了科研通微信公众号
15秒前
HiNDT发布了新的文献求助10
20秒前
smile发布了新的文献求助10
21秒前
zkwww完成签到 ,获得积分10
24秒前
存在完成签到,获得积分10
25秒前
漂亮幻莲发布了新的文献求助10
25秒前
cxl完成签到,获得积分10
27秒前
28秒前
李健的小迷弟应助存在采纳,获得10
29秒前
Zoe完成签到,获得积分10
31秒前
chen发布了新的文献求助10
32秒前
偷狗的小月亮完成签到,获得积分10
33秒前
tffyhgfjhy发布了新的文献求助10
33秒前
嘻嘻完成签到 ,获得积分10
37秒前
烟花应助拉布拉多多不多采纳,获得10
38秒前
orixero应助蹦比欸比采纳,获得30
39秒前
40秒前
麦当喽完成签到 ,获得积分10
45秒前
快来吃甜瓜完成签到,获得积分20
46秒前
47秒前
48秒前
机灵的千风完成签到,获得积分10
48秒前
烟花应助科研通管家采纳,获得10
49秒前
酷波er应助科研通管家采纳,获得10
49秒前
Ideal应助科研通管家采纳,获得50
49秒前
科研通AI2S应助科研通管家采纳,获得10
49秒前
小蘑菇应助科研通管家采纳,获得10
49秒前
烟花应助科研通管家采纳,获得10
49秒前
beyonetta发布了新的文献求助10
50秒前
51秒前
想飞的猪发布了新的文献求助10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780394
求助须知:如何正确求助?哪些是违规求助? 3325736
关于积分的说明 10224182
捐赠科研通 3040851
什么是DOI,文献DOI怎么找? 1669087
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758649