Association of Dietary Patterns with Parkinson’s Disease: A Cross-Sectional Study Based on the United States National Health and Nutritional Examination Survey Database

全国健康与营养检查调查 优势比 医学 可能性 置信区间 逻辑回归 横断面研究 食品集团 疾病 环境卫生 人口学 内科学 病理 人口 社会学
作者
Shulan Xu,Wei Li,Qing Di
出处
期刊:European Neurology [Karger Publishers]
卷期号:86 (1): 63-72 被引量:10
标识
DOI:10.1159/000527537
摘要

Although studies have explored some dietary patterns for Parkinson's disease (PD), more other dietary patterns and food item under the dietary pattern are needed to investigate. This study aimed to identify more categories of dietary patterns for PD and further explore the association of single food item with PD.The 2015-2018 US National Health and Nutritional Examination Survey (NHANES) database was used for data extraction. The data on demographics and nutrient intake were collected. Dietary patterns were derived from food categories by factor analysis. The association between dietary patterns or single food item and PD was explored using logistic regression analysis in the overall and only in secure PD cases, and results were expressed as odds ratio (OR) with 95% confidence intervals (CIs). Sensitivity analysis was performed by excluding participants using unsecure PD medication.Among 5,824 participants aged over 50 years, 91 were diagnosed as PD. Factor analysis identified 5 major dietary pattern factors. We observed that the increased adherence to Mediterranean diet (MeDi) was associated with the reduced odds of PD (OR = 0.78, 95% CI: 0.65-0.93). The higher adherence to Western pattern was associated with the increased odds of PD (OR = 2.19, 95% CI: 1.16-4.14). In addition, high intake of sweets under Western pattern was found to be associated with the higher odds of PD (OR = 2.01, 95% CI: 1.08-3.71).The odds of PD decreased by higher MeDi adherence and increased by higher Western pattern adherence, especially sweets intake in this pattern, suggesting population ≥50 years should adhere to MeDi pattern and decrease the adherence to Western pattern, reducing the intake of sweets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ALUCK完成签到,获得积分10
刚刚
1秒前
芒果味猕猴桃完成签到,获得积分10
2秒前
忐忑的草丛完成签到,获得积分10
2秒前
xiying完成签到 ,获得积分10
3秒前
思源应助淡定的如风采纳,获得10
3秒前
4秒前
热情的天晴应助安详夏彤采纳,获得10
5秒前
科研通AI5应助吕健采纳,获得10
6秒前
HGQ完成签到,获得积分10
6秒前
理论家发布了新的文献求助10
8秒前
gdh发布了新的文献求助10
8秒前
蛋蛋1完成签到,获得积分10
10秒前
12秒前
17秒前
18秒前
19秒前
Lucas应助福宝采纳,获得10
21秒前
ooo娜发布了新的文献求助10
23秒前
yyz发布了新的文献求助10
24秒前
翟zhai完成签到 ,获得积分20
26秒前
Owen应助blackcatcaptain采纳,获得10
26秒前
深情安青应助applelpypies采纳,获得10
29秒前
香蕉觅云应助理论家采纳,获得10
30秒前
yyyyy完成签到,获得积分10
30秒前
32秒前
orixero应助研友_851KE8采纳,获得10
34秒前
35秒前
36秒前
37秒前
nowfitness完成签到,获得积分10
37秒前
38秒前
huiwanfeifei发布了新的文献求助10
40秒前
CHL5722发布了新的文献求助10
41秒前
LUOYAN完成签到,获得积分20
43秒前
传奇3应助陈余航采纳,获得10
44秒前
漂亮的雨琴完成签到,获得积分10
45秒前
瘦瘦寻菡发布了新的文献求助10
46秒前
LUOYAN发布了新的文献求助30
47秒前
科研通AI5应助Maximuszhao采纳,获得10
47秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development 200
Gothic forms of feminine fictions 200
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836319
求助须知:如何正确求助?哪些是违规求助? 3378629
关于积分的说明 10505444
捐赠科研通 3098281
什么是DOI,文献DOI怎么找? 1706409
邀请新用户注册赠送积分活动 821000
科研通“疑难数据库(出版商)”最低求助积分说明 772413