Digital twin-based structural health monitoring by combining measurement and computational data: An aircraft wing example

计算机科学 鉴定(生物学) 忠诚 计算 信息物理系统 数据挖掘 过程(计算) 绘图 计算机工程 人工智能 算法 植物 电信 生物 操作系统 计算机图形学(图像)
作者
Xiaonan Lai,Liangliang Yang,Xiwang He,Yong Pang,Xueguan Song,Wei Sun
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:69: 76-90 被引量:69
标识
DOI:10.1016/j.jmsy.2023.06.006
摘要

Digital twin is a concept that utilizes digital technologies to mirror the real-time states of physical assets and extract the hidden yet valuable information of physical assets for optimization, decision-making or scheduling. By combining measurement and computational data, this paper presents a digital twin-based structural health monitoring framework of physical assets. The process for building the measurement-computation combined digital twin (MCC-DT) involves four steps. First, an artificial intelligence-driven load identification method combining measurement and computational data is employed to recognize the loads applied on physical assets. Two approaches were proposed to realize load identification, based on single fidelity surrogate models and deep learning techniques, respectively. Second, multi-fidelity surrogate (MFS) models are applied to improve the accuracy in the MCC-DT. Two routes for implementing the MFS models are introduced and the advantages and shortcomings of both are analyzed. Third, an online rainflow counting algorithm is developed to calculate the degradation of the physical assets. The main advantage of the algorithm is that it can provide a near real-time estimation for the damage accumulated of physical assets. Finally, the data generated from the first three steps can be fused into a three-dimensional scene using Web graphics library to provide an intuitive view of the MCC-DT. To describe the implementation details of the framework and verify its applicability and effectiveness, the MCC-DT was established using an aircraft model as an example.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助zhscu采纳,获得10
1秒前
田様应助我要做科研狗采纳,获得10
2秒前
无语的问雁完成签到,获得积分10
4秒前
5秒前
6秒前
彭于晏应助别说话采纳,获得30
7秒前
CipherSage应助haoran采纳,获得10
8秒前
协和_子鱼发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
花遇和风完成签到 ,获得积分10
12秒前
Focus_BG完成签到,获得积分10
13秒前
mengjianfen发布了新的文献求助10
15秒前
15秒前
zhscu发布了新的文献求助10
16秒前
大模型应助猪猪hero采纳,获得10
16秒前
BowieHuang应助nono采纳,获得10
19秒前
20秒前
20秒前
23秒前
25秒前
26秒前
结王三完成签到,获得积分10
26秒前
28秒前
29秒前
一一完成签到 ,获得积分10
29秒前
31秒前
haoran发布了新的文献求助10
34秒前
李健应助刀剑采纳,获得10
34秒前
猪猪hero发布了新的文献求助10
35秒前
39秒前
花遇和风关注了科研通微信公众号
42秒前
Jodie发布了新的文献求助10
42秒前
Choi完成签到,获得积分10
43秒前
43秒前
43秒前
44秒前
田超完成签到,获得积分10
44秒前
zhangjx发布了新的文献求助10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558025
求助须知:如何正确求助?哪些是违规求助? 4642970
关于积分的说明 14670108
捐赠科研通 4584465
什么是DOI,文献DOI怎么找? 2514893
邀请新用户注册赠送积分活动 1489009
关于科研通互助平台的介绍 1459631