激发
卷积神经网络
电池(电)
离子
锂(药物)
单位(环理论)
人工神经网络
健康状况
国家(计算机科学)
锂离子电池
计算机科学
材料科学
人工智能
物理
算法
电气工程
医学
数学
工程类
功率(物理)
热力学
数学教育
量子力学
内分泌学
作者
Xueyang Chen,Mengyang Chen,Weiwei Fang,Jilei Ye,Liu Lili,Yuping Wu
标识
DOI:10.1088/1402-4896/adae64
摘要
Abstract Estimating the State of Health (SOH) of lithium batteries is vital for the safe management of new energy systems. This study leverages voltage, current, and temperature data from the NASA battery dataset to extract health features. The relationship between these features and battery capacity is evaluated using mutual information analysis. An integrated Convolutional Neural Network (CNN), Gated Recurrent Unit (GRU), and Squeeze-and-Excitation (SE) model (CNN-GRU-SE) for estimating battery SOH is proposed. The CNN module identifies local features from the input data, the SE module emphasizes key features, and the GRU module captures temporal dependencies, effectively tracking the battery's health trend over time. The estimation results indicate that the CNN-GRU-SE model reduces the Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Root Mean Square Error (RMSE) by approximately 3% to 10% compared to the CNN, GRU, and CNN-GRU models. These results confirm the superior estimation capability of the integrated CNN-GRU-SE model. Furthermore, the study underscores the effective integration of the strengths of CNN, SE modules, and GRU, demonstrating its potential application in battery health management.
科研通智能强力驱动
Strongly Powered by AbleSci AI