An Explainable Artificial Intelligence Approach Using Graph Learning to Predict Intensive Care Unit Length of Stay

计算机科学 图形 重症监护室 人工智能 单位(环理论) 数据科学 机器学习 理论计算机科学 心理学 数学教育 医学 重症监护医学
作者
Tianjian Guo,Indranil R. Bardhan,Ying Ding,Shichang Zhang
出处
期刊:Information Systems Research [Institute for Operations Research and the Management Sciences]
卷期号:36 (3): 1478-1501 被引量:2
标识
DOI:10.1287/isre.2023.0029
摘要

We propose and test a novel graph learning-based explainable artificial intelligence (XAI) approach to address the challenge of developing explainable predictions of patient length of stay (LoS) in intensive care units (ICUs). Specifically, we address a notable gap in the literature on XAI methods that identify interactions between model input features to predict patient health outcomes. Our model intrinsically constructs a patient-level graph, which identifies the importance of feature interactions for prediction of health outcomes. It demonstrates state-of-the-art explanation capabilities based on identification of salient feature interactions compared with traditional XAI methods for prediction of LoS. We supplement our XAI approach with a small-scale user study, which demonstrates that our model can lead to greater user acceptance of artificial intelligence (AI) model-based decisions by contributing to greater interpretability of model predictions. Our model lays the foundation to develop interpretable, predictive tools that healthcare professionals can utilize to improve ICU resource allocation decisions and enhance the clinical relevance of AI systems in providing effective patient care. Although our primary research setting is the ICU, our graph learning model can be generalized to other healthcare contexts to accurately identify key feature interactions for prediction of other health outcomes, such as mortality, readmission risk, and hospitalizations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助正常采纳,获得10
刚刚
zhaonana发布了新的文献求助10
1秒前
SciGPT应助小广采纳,获得10
1秒前
1秒前
情怀应助刘英岑采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
冷傲的冰绿完成签到,获得积分10
3秒前
3秒前
浮游应助泥怎么睡得着的采纳,获得10
3秒前
3秒前
3秒前
酷波er应助FGG采纳,获得10
3秒前
星辰大海应助stw采纳,获得10
4秒前
浮游应助chen采纳,获得10
4秒前
4秒前
传奇3应助王俊采纳,获得10
5秒前
liu完成签到,获得积分10
5秒前
研友_pnx37L发布了新的文献求助10
6秒前
Dreamer完成签到,获得积分10
6秒前
6秒前
爬得飞快的仲文博完成签到,获得积分10
6秒前
科研通AI6应助呆萌综合征采纳,获得10
6秒前
swh发布了新的文献求助10
6秒前
平淡凡柔发布了新的文献求助10
7秒前
7秒前
8秒前
9秒前
林琳发布了新的文献求助10
9秒前
张志超发布了新的文献求助10
9秒前
10秒前
努力考博发布了新的文献求助10
10秒前
10秒前
科研通AI5应助十字丝采纳,获得10
10秒前
Jasper应助清秀的发夹采纳,获得10
10秒前
10秒前
崔崔崔发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193127
求助须知:如何正确求助?哪些是违规求助? 4375849
关于积分的说明 13627033
捐赠科研通 4230492
什么是DOI,文献DOI怎么找? 2320506
邀请新用户注册赠送积分活动 1318858
关于科研通互助平台的介绍 1269142