An Explainable Artificial Intelligence Approach Using Graph Learning to Predict Intensive Care Unit Length of Stay

计算机科学 图形 重症监护室 人工智能 单位(环理论) 数据科学 机器学习 理论计算机科学 心理学 数学教育 医学 重症监护医学
作者
Tianjian Guo,Indranil R. Bardhan,Ying Ding,Shichang Zhang
出处
期刊:Information Systems Research [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/isre.2023.0029
摘要

We propose and test a novel graph learning-based explainable artificial intelligence (XAI) approach to address the challenge of developing explainable predictions of patient length of stay (LoS) in intensive care units (ICUs). Specifically, we address a notable gap in the literature on XAI methods that identify interactions between model input features to predict patient health outcomes. Our model intrinsically constructs a patient-level graph, which identifies the importance of feature interactions for prediction of health outcomes. It demonstrates state-of-the-art explanation capabilities based on identification of salient feature interactions compared with traditional XAI methods for prediction of LoS. We supplement our XAI approach with a small-scale user study, which demonstrates that our model can lead to greater user acceptance of artificial intelligence (AI) model-based decisions by contributing to greater interpretability of model predictions. Our model lays the foundation to develop interpretable, predictive tools that healthcare professionals can utilize to improve ICU resource allocation decisions and enhance the clinical relevance of AI systems in providing effective patient care. Although our primary research setting is the ICU, our graph learning model can be generalized to other healthcare contexts to accurately identify key feature interactions for prediction of other health outcomes, such as mortality, readmission risk, and hospitalizations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
土木搬砖法律完成签到,获得积分10
1秒前
安然无恙完成签到,获得积分10
1秒前
提莫大将军完成签到,获得积分10
1秒前
Jc完成签到 ,获得积分10
2秒前
昏睡的眼神完成签到 ,获得积分10
2秒前
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
贰鸟应助科研通管家采纳,获得10
3秒前
吾身无拘应助科研通管家采纳,获得30
3秒前
贰鸟应助科研通管家采纳,获得10
3秒前
贰鸟应助科研通管家采纳,获得10
3秒前
贰鸟应助科研通管家采纳,获得10
3秒前
受伤的安波完成签到,获得积分10
3秒前
头秃科研人完成签到,获得积分10
3秒前
直率的皮带完成签到,获得积分10
4秒前
4秒前
愉快的宛儿完成签到,获得积分10
4秒前
虚心的寒梦完成签到,获得积分10
4秒前
lf-leo完成签到,获得积分10
5秒前
Certainty橙子完成签到 ,获得积分10
5秒前
桑榆非晚完成签到,获得积分10
5秒前
Moriarty完成签到,获得积分10
6秒前
cty完成签到,获得积分10
7秒前
SUIRIGO完成签到,获得积分10
7秒前
甜晞完成签到,获得积分10
7秒前
惊骢完成签到,获得积分20
7秒前
江霭完成签到,获得积分10
7秒前
大憨憨完成签到 ,获得积分10
8秒前
8秒前
8秒前
热的雪发布了新的文献求助10
9秒前
晨曦完成签到,获得积分10
9秒前
jiangjiang发布了新的文献求助10
10秒前
科研通AI5应助chen1976采纳,获得10
10秒前
10秒前
Ye完成签到,获得积分10
11秒前
cfy完成签到,获得积分10
12秒前
LeoLiu完成签到,获得积分10
12秒前
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
ICDD求助cif文件 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Secrets of Successful Product Launches 300
The Rise & Fall of Classical Legal Thought 260
Encyclopedia of Renewable Energy, Sustainability and the Environment Volume 1: Sustainable Development and Bioenergy Solutions 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4345404
求助须知:如何正确求助?哪些是违规求助? 3852008
关于积分的说明 12023118
捐赠科研通 3493583
什么是DOI,文献DOI怎么找? 1916989
邀请新用户注册赠送积分活动 959947
科研通“疑难数据库(出版商)”最低求助积分说明 860030