An Investigation on Machine Learning Predictive Accuracy Improvement and Uncertainty Reduction using VAE-based Data Augmentation

还原(数学) 机器学习 计算机科学 人工智能 数学 几何学
作者
Farah Alsafadi,Mahmoud Yaseen,Xu Wu
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2410.19063
摘要

The confluence of ultrafast computers with large memory, rapid progress in Machine Learning (ML) algorithms, and the availability of large datasets place multiple engineering fields at the threshold of dramatic progress. However, a unique challenge in nuclear engineering is data scarcity because experimentation on nuclear systems is usually more expensive and time-consuming than most other disciplines. One potential way to resolve the data scarcity issue is deep generative learning, which uses certain ML models to learn the underlying distribution of existing data and generate synthetic samples that resemble the real data. In this way, one can significantly expand the dataset to train more accurate predictive ML models. In this study, our objective is to evaluate the effectiveness of data augmentation using variational autoencoder (VAE)-based deep generative models. We investigated whether the data augmentation leads to improved accuracy in the predictions of a deep neural network (DNN) model trained using the augmented data. Additionally, the DNN prediction uncertainties are quantified using Bayesian Neural Networks (BNN) and conformal prediction (CP) to assess the impact on predictive uncertainty reduction. To test the proposed methodology, we used TRACE simulations of steady-state void fraction data based on the NUPEC Boiling Water Reactor Full-size Fine-mesh Bundle Test (BFBT) benchmark. We found that augmenting the training dataset using VAEs has improved the DNN model's predictive accuracy, improved the prediction confidence intervals, and reduced the prediction uncertainties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助科研通管家采纳,获得10
刚刚
orixero应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
打打应助科研通管家采纳,获得10
刚刚
wanci应助科研通管家采纳,获得10
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
852应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
1秒前
1秒前
Akim应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得30
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
青青子衿应助科研通管家采纳,获得20
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
pluto应助科研通管家采纳,获得60
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
顺利代曼发布了新的文献求助10
3秒前
3秒前
勤恳化蛹完成签到 ,获得积分10
8秒前
呜呼发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
科研通AI5应助虚幻的蘑菇采纳,获得10
12秒前
dfghjkl发布了新的文献求助10
16秒前
17秒前
英俊的铭应助feng_qi001采纳,获得10
17秒前
18秒前
YYYYY完成签到,获得积分10
18秒前
炙热芒果完成签到,获得积分20
19秒前
21秒前
YYYYY发布了新的文献求助30
21秒前
科研小白完成签到,获得积分10
22秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778324
求助须知:如何正确求助?哪些是违规求助? 3323927
关于积分的说明 10216572
捐赠科研通 3039206
什么是DOI,文献DOI怎么找? 1667877
邀请新用户注册赠送积分活动 798409
科研通“疑难数据库(出版商)”最低求助积分说明 758385