An Investigation on Machine Learning Predictive Accuracy Improvement and Uncertainty Reduction using VAE-based Data Augmentation

还原(数学) 机器学习 计算机科学 人工智能 数学 几何学
作者
Farah Alsafadi,Mahmoud Yaseen,Xu Wu
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2410.19063
摘要

The confluence of ultrafast computers with large memory, rapid progress in Machine Learning (ML) algorithms, and the availability of large datasets place multiple engineering fields at the threshold of dramatic progress. However, a unique challenge in nuclear engineering is data scarcity because experimentation on nuclear systems is usually more expensive and time-consuming than most other disciplines. One potential way to resolve the data scarcity issue is deep generative learning, which uses certain ML models to learn the underlying distribution of existing data and generate synthetic samples that resemble the real data. In this way, one can significantly expand the dataset to train more accurate predictive ML models. In this study, our objective is to evaluate the effectiveness of data augmentation using variational autoencoder (VAE)-based deep generative models. We investigated whether the data augmentation leads to improved accuracy in the predictions of a deep neural network (DNN) model trained using the augmented data. Additionally, the DNN prediction uncertainties are quantified using Bayesian Neural Networks (BNN) and conformal prediction (CP) to assess the impact on predictive uncertainty reduction. To test the proposed methodology, we used TRACE simulations of steady-state void fraction data based on the NUPEC Boiling Water Reactor Full-size Fine-mesh Bundle Test (BFBT) benchmark. We found that augmenting the training dataset using VAEs has improved the DNN model's predictive accuracy, improved the prediction confidence intervals, and reduced the prediction uncertainties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刘骁萱发布了新的文献求助10
1秒前
3秒前
ti发布了新的文献求助10
3秒前
6昂完成签到,获得积分10
4秒前
HH完成签到,获得积分10
5秒前
今后应助彭于晏采纳,获得10
5秒前
5秒前
6秒前
6秒前
JokerSkye关注了科研通微信公众号
6秒前
无人如之发布了新的文献求助10
7秒前
YXYWZMSZ发布了新的文献求助30
8秒前
8秒前
Mortimer发布了新的文献求助10
8秒前
8秒前
翟淑雨发布了新的文献求助10
9秒前
缥缈的道天完成签到,获得积分10
9秒前
肖旻发布了新的文献求助10
10秒前
11秒前
像个间谍完成签到 ,获得积分10
12秒前
Christina完成签到 ,获得积分10
12秒前
79发布了新的文献求助20
14秒前
14秒前
杰哥不要发布了新的文献求助10
14秒前
wyr525发布了新的文献求助10
15秒前
Sam十九发布了新的文献求助10
16秒前
今后应助JokerSkye采纳,获得10
17秒前
ning发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
22秒前
DuanYou完成签到,获得积分10
23秒前
烟花应助whuhustwit采纳,获得10
26秒前
27秒前
lcc完成签到,获得积分10
27秒前
季宇完成签到,获得积分10
28秒前
ding应助79采纳,获得10
29秒前
30秒前
Criminology34应助君猪采纳,获得10
31秒前
朴实凌旋发布了新的文献求助10
31秒前
归雁完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5797465
求助须知:如何正确求助?哪些是违规求助? 5784168
关于积分的说明 15494743
捐赠科研通 4924256
什么是DOI,文献DOI怎么找? 2650789
邀请新用户注册赠送积分活动 1598020
关于科研通互助平台的介绍 1552757