清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Fault diagnosis of needle selector drive parts based on adaptive stochastic resonance with improved generative adversarial networks

断层(地质) 材料科学 对抗制 随机共振 生成语法 自适应共振理论 生成对抗网络 人工智能 人工神经网络 计算机科学 噪音(视频) 深度学习 生物 古生物学 图像(数学)
作者
Xin Ru,Renjie Jin,Laihu Peng,Yubao Qi,liangmei Hou
出处
期刊:Journal of Industrial Textiles [SAGE Publishing]
卷期号:54
标识
DOI:10.1177/15280837241299686
摘要

Piezoelectric needle selectors, as key weaving components in the jacquard knitting process of knitting machinery, are widely used in textile equipment. Accurate diagnostic procedures for needle selector drive faults are crucial to ensure the normal operation of the equipment. However, traditional vibration diagnosis methods cannot detect weak periodic signals, resulting in low accuracy of monitoring results. To address this issue, this paper proposes an adaptive stochastic resonance (SR) method based on an improved generative adversarial network (IGAN). Firstly, in order to solve the problem of difficulty in obtaining stochastic resonance parameters, SR is combined with IGAN, and IGAN provides the optimal SR parameters. Secondly, a soft threshold residual attention mechanism and residual network were introduced in the GAN network, and multiple generators were utilized to alleviate the problem of model collapse, in order to adapt to the actual working environment. In addition, due to the large amount of data, it is recommended to use feature parameters for training to improve the efficiency of model training. Finally, through a typical vibration data, the influence of different parameter quantities on the training accuracy of the model was studied, and the superiority of the proposed model compared to other models and the stability of the model under different environmental influences were explored. The results show that this method can effectively detect weak periodic signals of the needle selection driver, effectively alleviate the problem of model collapse in different environments, and is superior to existing methods in terms of accuracy and stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhuosht完成签到 ,获得积分10
2秒前
研友_LMpo68完成签到 ,获得积分10
2秒前
5秒前
无花果应助5476采纳,获得10
11秒前
victory_liu完成签到,获得积分10
14秒前
陈醋塔塔完成签到,获得积分10
20秒前
lql完成签到 ,获得积分10
27秒前
28秒前
个性松完成签到 ,获得积分10
34秒前
TY完成签到 ,获得积分10
35秒前
陶军辉完成签到 ,获得积分10
35秒前
37秒前
minuxSCI完成签到,获得积分10
38秒前
40秒前
丁娜发布了新的文献求助10
40秒前
顺利问玉完成签到 ,获得积分10
46秒前
5476发布了新的文献求助10
46秒前
广阔天地完成签到 ,获得积分10
48秒前
拼搏的白云完成签到,获得积分10
51秒前
lixy发布了新的文献求助10
55秒前
59秒前
宏伟应助Cindy采纳,获得10
59秒前
1分钟前
1分钟前
Eric800824完成签到 ,获得积分10
1分钟前
光亮的冰薇完成签到 ,获得积分10
1分钟前
zhangsan完成签到,获得积分10
1分钟前
大气黑米完成签到 ,获得积分10
1分钟前
有魅力天抒完成签到 ,获得积分10
1分钟前
充电宝应助5476采纳,获得10
1分钟前
1分钟前
nine2652完成签到 ,获得积分10
1分钟前
1分钟前
yindi1991完成签到 ,获得积分10
2分钟前
5476发布了新的文献求助10
2分钟前
Alger完成签到,获得积分10
2分钟前
善学以致用应助adeno采纳,获得10
2分钟前
你今天学了多少完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784835
求助须知:如何正确求助?哪些是违规求助? 3330070
关于积分的说明 10244297
捐赠科研通 3045435
什么是DOI,文献DOI怎么找? 1671691
邀请新用户注册赠送积分活动 800613
科研通“疑难数据库(出版商)”最低求助积分说明 759541