DLW-YOLO: an efficient algorithm for small target detection

计算机科学 算法 图像处理 算法设计 人工智能 计算机视觉 图像(数学)
作者
Qiang Ma,Wenlong Zhao,Y.R. Liu,Z. Q. Liu
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:34 (01)
标识
DOI:10.1117/1.jei.34.1.013039
摘要

Facing dataset quality problems, small target detection challenges, and computational resource constraints in the field of pest and disease detection, we propose a comprehensive solution. First, high-quality data support for model training is provided by constructing specialized datasets to overcome the problems of inaccurate labels, lack of sample diversity, and insufficient coverage of small target instances in publicly available datasets. Second, for the small target detection challenge, the model introduces spatial pyramid pooling efficient local aggregation network (SPPELAN) and dimension aware selective integration (DASI) techniques to significantly improve the model's ability to capture and fuse small target features, especially the detection accuracy in the complex background of farmland. Finally, based on the vision transformer via token aggregation-GSconv cross stage partial (VoV-GSCSP) framework, the light weight (LW) attention structure is designed to realize the lightweight and high efficiency of the model, to ensure the excellent performance of the model under the condition of limited computational resources, and to provide technological advantages for wheat pest and disease detection. The experiments show that the model achieves an mAP of 90.71% on the self-constructed dataset, which is a 9.69% improvement over the pre-improvement, compared with EfficientNetv2, FasterRCNN + MobileNetv2, and YOLOv5s with improvements of 14.48%, 12.59%, and 10.34%, respectively. In addition, the model has excellent generalization ability and is suitable for various crop detection, especially in multi-category and small target scenarios, and the lightweight design is convenient for deploying mobile terminals, which provides a new solution for intelligent detection of agricultural diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助wonwojo采纳,获得10
2秒前
倪好完成签到,获得积分10
2秒前
牛牛要当院士喽完成签到,获得积分10
2秒前
JIANG发布了新的文献求助30
2秒前
7秒前
烂漫衫完成签到,获得积分10
12秒前
14秒前
YUN完成签到,获得积分10
16秒前
赵浩宇完成签到,获得积分10
17秒前
Hcc完成签到 ,获得积分10
18秒前
20秒前
糖糖完成签到,获得积分10
22秒前
23秒前
天天快乐应助YI采纳,获得10
23秒前
正直的夏真完成签到,获得积分10
26秒前
27秒前
诗梦完成签到,获得积分10
29秒前
微笑的尔蓝完成签到,获得积分10
30秒前
ChiariRay发布了新的文献求助10
30秒前
32秒前
103921wjk完成签到,获得积分10
33秒前
34秒前
活力晓曼完成签到 ,获得积分10
34秒前
慕青应助科研通管家采纳,获得10
36秒前
烟花应助科研通管家采纳,获得10
36秒前
猪猪hero应助科研通管家采纳,获得10
36秒前
今后应助科研通管家采纳,获得30
36秒前
情怀应助科研通管家采纳,获得10
36秒前
36秒前
WUYONGSHUAI发布了新的文献求助10
36秒前
37秒前
ZD完成签到 ,获得积分10
39秒前
Summer发布了新的文献求助10
40秒前
无尽夏完成签到,获得积分10
40秒前
张张张关注了科研通微信公众号
42秒前
善学以致用应助crillzlol采纳,获得10
44秒前
禾禹泉士发布了新的文献求助10
44秒前
Summer完成签到,获得积分10
45秒前
苦瓜大王完成签到 ,获得积分20
46秒前
47秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799219
求助须知:如何正确求助?哪些是违规求助? 3344889
关于积分的说明 10322248
捐赠科研通 3061362
什么是DOI,文献DOI怎么找? 1680250
邀请新用户注册赠送积分活动 806929
科研通“疑难数据库(出版商)”最低求助积分说明 763451