Convergence-Driven Adaptive Many-Objective Particle Swarm Optimization

趋同(经济学) 粒子群优化 数学优化 计算机科学 多群优化 元启发式 数学 经济 经济增长
作者
Yunfei Yi,Zhiyong Wang,Yunying Shi,Zheng Qiang Song,Binbin Zhao
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/access.2025.3525850
摘要

In recent years, the prevalence of Many-Objective Optimization Problems (MaOPs) in practical applications has been increasing. However, traditional multi-objective optimization algorithms, such as Multiple Objective Particle Swarm Optimization (MOPSO), often face challenges of dimensionality and selection pressure when handling MaOPs. To overcome these challenges, this study proposes a Convergence-Driven Adaptive Many-Objective Particle Swarm Optimization (CDA-MOPSO) algorithm. This algorithm introduces a convergence metric to assess the convergence status and solution distribution quality of the particle swarm during iterations. Based on this metric, Convergence-Aware Learning Factor Adjustment (CALFA), Convergence-Oriented Dimension Variation Strategy (CODVS), and Convergence-Driven Archive Maintenance (CDAM) operations are proposed. Additionally, evolutionary search is further conducted on the external archive to enhance algorithm performance. To validate the performance of the CDA-MOPSO algorithm, extensive experiments are conducted using standard test problems such as DTLZ and WFG. Experimental results demonstrate that the CDA-MOPSO algorithm exhibits superior convergence and solution distribution characteristics across multiple standard test functions, particularly in handling many-objective optimization problems, outperforming traditional multi-objective algorithms significantly. In conclusion, the CDA-MOPSO algorithm provides a novel solution for many-objective optimization problems, offering strong convergence capability and solution diversity, with broad prospects for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助MS903采纳,获得10
1秒前
正正发布了新的文献求助10
2秒前
3秒前
冯世嘉发布了新的文献求助10
4秒前
深情安青应助环境催化采纳,获得10
4秒前
英姑应助alvin采纳,获得10
5秒前
bxyyy应助PPL采纳,获得10
6秒前
zhangmaomao完成签到 ,获得积分10
7秒前
CipherSage应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
8秒前
情怀应助科研通管家采纳,获得100
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
大模型应助科研通管家采纳,获得10
9秒前
彭于晏应助shinble采纳,获得10
9秒前
9秒前
小蘑菇应助budingman采纳,获得20
9秒前
10秒前
平淡扬完成签到 ,获得积分10
10秒前
MS903发布了新的文献求助10
15秒前
15秒前
别拿暗恋当饭吃完成签到 ,获得积分10
15秒前
ws5995完成签到,获得积分10
19秒前
情怀应助小冰棍采纳,获得10
19秒前
21秒前
大模型应助ws5995采纳,获得10
22秒前
sue发布了新的文献求助10
22秒前
李健的小迷弟应助元一一采纳,获得10
24秒前
26秒前
alvin发布了新的文献求助10
27秒前
bohn123完成签到 ,获得积分10
27秒前
27秒前
yuyu发布了新的文献求助10
28秒前
今后应助开心跳跳糖采纳,获得10
29秒前
30秒前
30秒前
30秒前
leo发布了新的文献求助10
31秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962406
求助须知:如何正确求助?哪些是违规求助? 3508495
关于积分的说明 11141261
捐赠科研通 3241177
什么是DOI,文献DOI怎么找? 1791399
邀请新用户注册赠送积分活动 872861
科研通“疑难数据库(出版商)”最低求助积分说明 803396