亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Machine Learning Model for Predicting Prognosis in HCC Patients With Diabetes After TACE

糖尿病 医学 内科学 人工智能 肿瘤科 机器学习 计算机科学 内分泌学
作者
Linxia Wu,Lei Chen,Lijie Zhang,Yiming Liu,Davy Xuesong Ouyang,Wenlong Wu,Lei Yu,Ping Han,Huangxuan Zhao,Chuansheng Zheng
出处
期刊:Journal of Hepatocellular Carcinoma [Dove Medical Press]
卷期号:Volume 12: 77-91
标识
DOI:10.2147/jhc.s496481
摘要

Purpose: Type II diabetes mellitus (T2DM) has been found to increase the mortality of patients with hepatocellular carcinoma (HCC).Therefore, this study aimed to establish and validate a machine learning-based explainable prediction model of prognosis in patients with HCC and T2DM undergoing transarterial chemoembolization (TACE).Patients and Methods: The prediction model was developed using data from the derivation cohort comprising patients from three medical centers, followed by external validation utilizing patient data extracted from another center.Further, five predictive models were employed to establish prognosis models for 1-, 2-, and 3-year survival, respectively.Prediction performance was assessed by the receiver operating characteristic (ROC), calibration, and decision curve analysis curves.Lastly, the SHapley Additive exPlanations (SHAP) method was used to interpret the final ML model.Results: A total of 636 patients were included.Thirteen variables were selected for the model development.The final random survival forest (RSF) model exhibited excellent performance in the internal validation cohort, with areas under the ROC curve (AUCs) of 0.824, 0.853, and 0.810 in the 1-, 2-, and 3-year survival groups, respectively.This model also demonstrated remarkable discrimination in the external validation cohort, achieving AUCs of 0.862, 0.815, and 0.798 in the 1-, 2-, and 3-year survival groups, respectively.SHAP summary plots were also created to interpret the RSF model.Conclusion: An RSF model with good predictive performance was developed by incorporating simple parameters.This prognostic prediction model may assist physicians in early clinical intervention and improve prognosis outcomes in patients with HCC and comorbid T2DM after TACE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江瑾玥发布了新的文献求助10
1秒前
chinluo完成签到 ,获得积分10
3秒前
善学以致用应助lvsehx采纳,获得10
7秒前
ding应助时间下起了雨采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
思源应助科研通管家采纳,获得10
14秒前
shimhjy应助科研通管家采纳,获得20
14秒前
shimhjy应助科研通管家采纳,获得30
14秒前
bc应助科研通管家采纳,获得30
14秒前
15秒前
lvsehx发布了新的文献求助10
19秒前
qinLuo完成签到 ,获得积分10
20秒前
yuanquaner发布了新的文献求助10
21秒前
ShiYanYang完成签到,获得积分10
27秒前
yuanquaner完成签到,获得积分10
29秒前
31秒前
时间下起了雨完成签到,获得积分20
35秒前
38秒前
wc完成签到 ,获得积分10
42秒前
54秒前
cookie发布了新的文献求助10
1分钟前
科研助手6应助ZHY采纳,获得10
1分钟前
卜天亦完成签到,获得积分10
1分钟前
1分钟前
zho应助huangrui采纳,获得10
1分钟前
合适映雁完成签到,获得积分10
1分钟前
Star应助ZHY采纳,获得10
1分钟前
开始学习发布了新的文献求助10
1分钟前
1分钟前
小张完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
卡琳完成签到 ,获得积分10
2分钟前
bkagyin应助科研通管家采纳,获得10
2分钟前
2分钟前
斯寜应助科研通管家采纳,获得10
2分钟前
狗咚嘻完成签到,获得积分10
2分钟前
川西你彪发布了新的文献求助10
2分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807998
求助须知:如何正确求助?哪些是违规求助? 3352680
关于积分的说明 10359926
捐赠科研通 3068647
什么是DOI,文献DOI怎么找? 1685213
邀请新用户注册赠送积分活动 810332
科研通“疑难数据库(出版商)”最低求助积分说明 766022