Development of a Wine Yeast Strain Capable of Malolactic Fermentation and Reducing the Ethyl Carbamate Content in Wine

苹果酸发酵 酿酒 酒明串珠菌 葡萄酒 氨基甲酸乙酯 葡萄酒故障 酿酒酵母 发酵 酿酒发酵 生物化学 酵母 乙醇发酵 游离氨基氮 食品科学 精氨酸酶 化学 乳酸 生物 酿酒酵母 细菌 精氨酸 氨基酸 遗传学
作者
Egor A. Vasyagin,Valery N. Urakov,M. Yu. Shalamitskiy,Sofia Cherviak,Ivanova Ev,Valentina I. Zagoruyko,Alexey V. Beletsky,Andrey L. Rakitin,Eugenia S. Mardanova,Vitaly V. Kushnirov,Nikolai V. Ravin,Andrey V. Mardanov
标识
DOI:10.20944/preprints202412.1462.v1
摘要

In winemaking, malolactic fermentation (MLF), which converts L-malic acid to L-lactic acid, is often applied after the alcoholic fermentation stage to improve the sensory properties of the wine and its microbiological stability. MLF is usually implemented by lactic acid bacteria, which, however, are sensitive to the conditions of alcoholic fermentation. Therefore, the development of a wine yeast strains capable of both alcoholic fermentation and MLF is an important task. Using genome editing, we engineered a modified variant of the triploid wine yeast strain Saccharomyces cerevisiae I-328, in which the CAR1 arginase gene was replaced with the malate permease gene from Schizosaccharomyces pombe and the malolactic enzyme gene from Oenococcus oeni. Genome-wide transcriptional profiling confirmed the expression of the introduced genes and revealed a limited effect of the modification on global gene expression. Winemaking experiments show that genome editing did not affect the fermentation activity and the production of ethanol, while the use of the modified strain ensured a tenfold reduction in malate content with the simultaneous formation of lactate. The resulting wines had a softer and more harmonious taste compared to the wine obtained using the parental strain. Inactivation of arginase, which forms urea and L-ornithine through the breakdown of arginine, also led to a twofold decrease in the content of urea and the carcinogenic ethyl carbamate in wine. Thus, the new strain with the replacement of the arginase gene with the MLF gene cassette is promising for use in winemaking.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
box1221发布了新的文献求助10
刚刚
yinhe028发布了新的文献求助10
刚刚
刚刚
坦率灵槐应助沉静的灵松采纳,获得10
1秒前
好好下文献完成签到,获得积分10
1秒前
闵松岳发布了新的文献求助10
2秒前
yyy完成签到 ,获得积分20
2秒前
可爱的函函应助包容若风采纳,获得10
3秒前
专注的觅云完成签到 ,获得积分10
3秒前
坦率灵槐应助hhh采纳,获得10
3秒前
JamesPei应助D&L采纳,获得10
4秒前
坦率曼寒发布了新的文献求助10
5秒前
5秒前
小祝完成签到,获得积分10
7秒前
赘婿应助yinhe028采纳,获得10
7秒前
小黄鸭发布了新的文献求助10
8秒前
8秒前
大模型应助YEGE采纳,获得10
9秒前
9秒前
9秒前
11秒前
慕青应助LZT采纳,获得50
11秒前
爆米花应助机智的然然采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
wsj发布了新的文献求助10
14秒前
搞怪的鹤发布了新的文献求助10
15秒前
15秒前
17秒前
17秒前
慕青应助hx采纳,获得10
18秒前
大师傅但是关注了科研通微信公众号
18秒前
乐观囧完成签到,获得积分10
20秒前
21秒前
22秒前
23秒前
23秒前
WANGs发布了新的文献求助10
24秒前
24秒前
123发布了新的文献求助30
25秒前
yuyu发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648573
求助须知:如何正确求助?哪些是违规求助? 4775700
关于积分的说明 15044558
捐赠科研通 4807505
什么是DOI,文献DOI怎么找? 2570811
邀请新用户注册赠送积分活动 1527652
关于科研通互助平台的介绍 1486501