A multi-order moment matching-based unsupervised domain adaptation with application to cross-working condition fault diagnosis of rolling bearings

计算机科学 域适应 判别式 人工智能 力矩(物理) 模式识别(心理学) 领域(数学分析) 分类器(UML) 聚类分析 学习迁移 匹配(统计) 数据挖掘 数学 统计 数学分析 物理 经典力学
作者
Qi Chang,Congcong Fang,Wei Zhou,Xianghui Meng
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:24 (3): 1438-1455 被引量:6
标识
DOI:10.1177/14759217241262386
摘要

Unsupervised domain adaptation-based transfer learning (TL) has been widely used in rolling bearing fault diagnosis to overcome the problem of limited and non-identically distributed labeled data. Discrepancy-based alignment is a popular domain adaptation method in TL. However, due to the inability to completely eliminate domain drift, the classifier learned from the source domain may easily misclassify some target domain samples that are scattered near the decision edge. In this work, a multi-order moment matching-based domain adaptation is proposed to address the issue. Low- and high-order moment matching is simultaneously applied to describe the complex non-Gaussian distributions in more detail and realize coarse- and fine-grained hybrid domain alignment. Furthermore, a discriminative clustering approach is employed to extract domain-invariant features of inter-class discrimination and intra-class compactness, which effectively reduces the negative transfer caused by hard-aligned target samples. The application of the proposed model to the experimental dataset demonstrates that the model can significantly improve the diagnosis accuracy of rolling bearing faults in cross-working conditions. This study can be of assistance to engineers in promptly identifying and addressing rolling bearing faults, ultimately enhancing the reliability and safety of equipment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗灵珊发布了新的文献求助10
1秒前
yyyyds发布了新的文献求助10
1秒前
1秒前
科研通AI6应助shirely采纳,获得10
2秒前
鎏祈完成签到,获得积分10
3秒前
核桃发布了新的文献求助10
3秒前
3秒前
3秒前
5秒前
5秒前
万能图书馆应助Mic采纳,获得10
5秒前
baacck发布了新的文献求助10
5秒前
7秒前
Shawn发布了新的文献求助10
7秒前
7秒前
深情安青应助正好采纳,获得10
8秒前
生动安南完成签到,获得积分10
10秒前
10秒前
watercolding完成签到,获得积分20
12秒前
未来可期发布了新的文献求助10
12秒前
12秒前
polki关注了科研通微信公众号
12秒前
12秒前
情怀应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
pluto应助科研通管家采纳,获得10
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
二阳化湉应助科研通管家采纳,获得10
13秒前
我是老大应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
13秒前
脑洞疼应助奋斗灵珊采纳,获得10
13秒前
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
orixero应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
上官若男应助科研通管家采纳,获得10
13秒前
Zx_1993应助科研通管家采纳,获得20
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263389
求助须知:如何正确求助?哪些是违规求助? 4423991
关于积分的说明 13771463
捐赠科研通 4298989
什么是DOI,文献DOI怎么找? 2358843
邀请新用户注册赠送积分活动 1355116
关于科研通互助平台的介绍 1316331