材料科学
硫辛酸
相间
原位聚合
锂硫电池
电池(电)
聚合
硫黄
原位
锂(药物)
纳米技术
化学工程
电极
电化学
硫辛酸
有机化学
复合材料
冶金
聚合物
化学
工程类
遗传学
量子力学
医学
生物
物理
内分泌学
物理化学
功率(物理)
抗氧化剂
作者
Liujian Wang,Ke Yue,Qiangqiang Qiao,Zihao Zhao,Yanyan Xu,Leyi Pan,Yujing Liu,Hanying Li,Bao‐Ku Zhu
标识
DOI:10.1002/aenm.202402617
摘要
Abstract Lithium–sulfur (Li–S) batteries possess high theoretical energy density, whereas the shuttle effect of polysulfides and the uncontrollable lithium (Li) dendrites seriously reduce the reversible capacity and cycling lifespan. Constructing an interphase to address the issues in both the cathode and anode simultaneously is significant but still challenging. In this study, a strategy of functionalizing commercial polypropylene (PP) separators is proposed by in situ poly(thioctic acid) (PTA) polymerization. Compared with the conventional separator modifications, the ring‐opening polymerization methodology initiated by heat is more facile and environment‐friendly without changing the nanostructures among the porous separators. On the cathode side, the PTA‐coated separator (PTA‐PP) blocks the shuttle of polysulfides through the electrostatic interaction. On the anode side, the PTA‐coated generates a lithium fluoride (LiF)‐rich solid electrolyte interface (SEI), identified by cryo‐transmission electron microscopy (cryo‐TEM), to accelerate the Li + diffusion and inhibit the growth of Li dendrites. Due to the interphases constructed by the PTA‐PP separator, the Li–S cells exhibit excellent long‐term cycling in which the capacity retention rate is more than 76% after 700 cycles at 0.5 C. The in situ elaborate modification strategy may provide insights into the high‐performance separator design to promote the potentially large‐scale applications of Li–S batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI