计算机科学
任务(项目管理)
遗传算法
图形
构造(python库)
数学优化
理论计算机科学
机器学习
数学
工程类
程序设计语言
系统工程
作者
Yuezhong Wu,Ya Wen,Yingbo Wu,Yungang Li,Xiangming Zheng,Lingjiao Chen
出处
期刊:Sustainability
[MDPI AG]
日期:2024-07-19
卷期号:16 (14): 6199-6199
被引量:2
摘要
Aiming at the operational efficiency of small farm machinery groups in cooperative operations in hilly areas, this study proposes a static task allocation model. This method combines the optimal gene fragment retention method based on a genetic algorithm (OGFR-GA) and the method for generating multi-loop weighted connected graphs based on Prim’s algorithm (MLW-Prim). The collaborative objective function for the harvester group was established by considering factors such as operation time, fuel consumption, and distance. The OGFR-GA was designed and applied multiple times to obtain several optimal gene fragments corresponding to the number of farm machines. These fragments were used as critical paths in the weighted connected graph generated based on farm machinery performance parameters and task parameters. The MLW-Prim method was proposed to construct this weighted connected graph and realize the static task allocation model for multi-machine cooperative operations. Simulation experiments showed that the model combining OGFR-GA and MLW-Prim achieved optimal values with fewer iterations, and reduced both group cost and cost variance compared to traditional algorithms. This method meets the static task allocation needs for multi-machine cooperative operations in agricultural production and can be integrated with intelligent operations in mountainous and hilly regions, laying a theoretical foundation for improving efficiency.
科研通智能强力驱动
Strongly Powered by AbleSci AI