Interpretable diagnosis of breast lesions in ultrasound imaging using deep multi-stage reasoning

双雷达 血管性 回声 超声波 乳腺超声检查 乳房成像 边距(机器学习) 放射科 阶段(地层学) 乳腺癌 计算机科学 医学 人工智能 乳腺摄影术 机器学习 癌症 古生物学 内科学 生物
作者
Kaixuan Cui,Weiyong Liu,Dongyue Wang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (21): 215025-215025
标识
DOI:10.1088/1361-6560/ad869f
摘要

Abstract Objective. Ultrasound is the primary screening test for breast cancer. However, providing an interpretable auxiliary diagnosis of breast lesions is a challenging task. This study aims to develop an interpretable auxiliary diagnostic method to enhance usability in human-machine collaborative diagnosis. Approach. To address this issue, this study proposes the deep multi-stage reasoning method (DMSRM), which provides individual and overall breast imaging-reporting and data system (BI-RADS) assessment categories for breast lesions. In the first stage of the DMSRM, the individual BI-RADS assessment network (IBRANet) is designed to capture lesion features from breast ultrasound images. IBRANet performs individual BI-RADS assessments of breast lesions using ultrasound images, focusing on specific features such as margin, contour, echogenicity, calcification, and vascularity. In the second stage, evidence reasoning (ER) is employed to achieve uncertain information fusion and reach an overall BI-RADS assessment of the breast lesions. Main results. To evaluate the performance of DMSRM at each stage, two test sets are utilized: the first for individual BI-RADS assessment, containing 4322 ultrasound images; the second for overall BI-RADS assessment, containing 175 sets of ultrasound image pairs. In the individual BI-RADS assessment of margin, contour, echogenicity, calcification, and vascularity, IBRANet achieves accuracies of 0.9491, 0.9466, 0.9293, 0.9234, and 0.9625, respectively. In the overall BI-RADS assessment of lesions, the ER achieves an accuracy of 0.8502. Compared to independent diagnosis, the human-machine collaborative diagnosis results of three radiologists show increases in positive predictive value by 0.0158, 0.0427, and 0.0401, in sensitivity by 0.0400, 0.0600 and 0.0434, and in area under the curve by 0.0344, 0.0468, and 0.0255. Significance. This study proposes a DMSRM that enhances the transparency of the diagnostic reasoning process. Results indicate that DMSRM exhibits robust BI-RADS assessment capabilities and provides an interpretable reasoning process that better suits clinical needs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆萌的太阳完成签到 ,获得积分10
刚刚
Jozee发布了新的文献求助10
2秒前
6秒前
7秒前
小许完成签到 ,获得积分10
8秒前
完美世界应助JTB采纳,获得10
8秒前
9秒前
13秒前
研友_nEoEy8完成签到,获得积分10
13秒前
踏实寄风发布了新的文献求助10
14秒前
犹豫千筹完成签到,获得积分10
14秒前
科研通AI5应助断章采纳,获得10
15秒前
岑晓冰完成签到 ,获得积分10
17秒前
高兴冰淇淋完成签到,获得积分10
18秒前
20秒前
Werner完成签到 ,获得积分10
20秒前
21秒前
曼联名宿马奎尔完成签到,获得积分10
22秒前
断章完成签到,获得积分10
23秒前
24秒前
百里盼山发布了新的文献求助10
24秒前
27秒前
28秒前
酷波er应助百里盼山采纳,获得10
28秒前
Akim应助京京采纳,获得10
29秒前
断章发布了新的文献求助10
29秒前
Zhjie126完成签到,获得积分10
30秒前
30秒前
枫七完成签到,获得积分10
31秒前
华仔应助土豆侠采纳,获得10
33秒前
科研小民工应助专注的安卉采纳,获得200
33秒前
35秒前
38秒前
42秒前
无花果应助万万想到了采纳,获得10
42秒前
大道至简完成签到,获得积分10
42秒前
远山完成签到 ,获得积分10
42秒前
踏实寄风完成签到,获得积分10
42秒前
yyauthor完成签到,获得积分10
43秒前
土豆侠发布了新的文献求助10
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783103
求助须知:如何正确求助?哪些是违规求助? 3328427
关于积分的说明 10236544
捐赠科研通 3043550
什么是DOI,文献DOI怎么找? 1670558
邀请新用户注册赠送积分活动 799766
科研通“疑难数据库(出版商)”最低求助积分说明 759119