CT-based radiomics for predicting breast cancer radiotherapy side effects

无线电技术 乳腺癌 放射治疗 计算机科学 医学 癌症 医学物理学 生物信息学 放射科 内科学 人工智能 生物
作者
Óscar Llorián-Salvador,Nora Windeler,Nicole Martin,Lucas Etzel,Miguel A. Andrade‐Navarro,Denise Bernhardt,Burkhard Rost,Kai Joachim Borm,Stephanie E. Combs,Marciana Nona Duma,Jan C. Peeken
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1) 被引量:3
标识
DOI:10.1038/s41598-024-70723-w
摘要

Skin inflammation with the potential sequel of moist epitheliolysis and edema constitute the most frequent breast radiotherapy (RT) acute side effects. The aim of this study was to compare the predictive value of tissue-derived radiomics features to the total breast volume (TBV) for the moist cells epitheliolysis as a surrogate for skin inflammation, and edema. Radiomics features were extracted from computed tomography (CT) scans of 252 breast cancer patients from two volumes of interest: TBV and glandular tissue (GT). Machine learning classifiers were trained on radiomics and clinical features, which were evaluated for both side effects. The best radiomics model was a least absolute shrinkage and selection operator (LASSO) classifier, using TBV features, predicting moist cells epitheliolysis, achieving an area under the receiver operating characteristic (AUROC) of 0.74. This was comparable to TBV breast volume (AUROC of 0.75). Combined models of radiomics and clinical features did not improve performance. Exclusion of volume-correlated features slightly reduced the predictive performance (AUROC 0.71). We could demonstrate the general propensity of planning CT-based radiomics models to predict breast RT-dependent side effects. Mammary tissue was more predictive than glandular tissue. The radiomics features performance was influenced by their high correlation to TBV volume.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
风清扬应助x蝎子柰柰采纳,获得10
2秒前
rainiee发布了新的文献求助10
3秒前
敏静发布了新的文献求助10
4秒前
小宋发布了新的文献求助10
4秒前
4秒前
huhu发布了新的文献求助10
5秒前
6秒前
无聊的万天完成签到,获得积分10
7秒前
一路向南完成签到 ,获得积分10
8秒前
8秒前
8秒前
9秒前
STZ完成签到,获得积分10
9秒前
brucelin发布了新的文献求助10
10秒前
852应助1111采纳,获得10
10秒前
韭菜发布了新的文献求助30
13秒前
13秒前
琪琪的完成签到,获得积分10
15秒前
Tony完成签到,获得积分10
15秒前
16秒前
16秒前
平常的毛豆应助biye采纳,获得10
16秒前
16秒前
19秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
柯语雪完成签到 ,获得积分10
20秒前
十一完成签到,获得积分10
20秒前
susu307发布了新的文献求助10
21秒前
沉默完成签到,获得积分10
21秒前
小宋发布了新的文献求助10
22秒前
23秒前
23秒前
灿烂千阳完成签到,获得积分10
23秒前
23秒前
Orange应助吴晓敏采纳,获得10
23秒前
24秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867412
求助须知:如何正确求助?哪些是违规求助? 3409750
关于积分的说明 10664834
捐赠科研通 3133968
什么是DOI,文献DOI怎么找? 1728716
邀请新用户注册赠送积分活动 833058
科研通“疑难数据库(出版商)”最低求助积分说明 780550