ATR‐FTIR Spectroscopy Preprocessing Technique Selection for Identification of Geographical Origins of Gastrodia elata Blume

预处理器 人工智能 线性判别分析 模式识别(心理学) 数据预处理 计算机科学 偏最小二乘回归 极限学习机 支持向量机 数学 生物系统 机器学习 人工神经网络 生物
作者
Hong Liu,Honggao Liu,Jieqing Li,Yuanzhong Wang
出处
期刊:Journal of Chemometrics [Wiley]
卷期号:38 (10) 被引量:2
标识
DOI:10.1002/cem.3579
摘要

ABSTRACT Gastrodia elata Blume from different regions varies in growth conditions, soil types, and climate, which directly affects the content and quality of its medicinal components. Accurately identifying the origin can effectively ensure the medicinal value of G. elata Bl., prevent the circulation of counterfeit products, and thus protect the interests and health of consumers. Attenuated total reflectance Fourier transform infrared (ATR‐FTIR) spectroscopy is a rapid and effective method for verifying the authenticity of traditional Chinese medicines. However, the presence of scattering effects in the spectra poses challenges in establishing reliable discrimination models. Therefore, employing appropriate scattering correction techniques is crucial for improving the quality of spectral data and the accuracy of discrimination models. This study uses two ensemble preprocessing approaches; the first type is series fusion of scatter correction technologies (SCSF), and another method is sequential preprocessing through orthogonalization (SPORT). Four discriminant models were established using a single scattering correction technique and two ensemble preprocessing approaches. The results show that the data‐driven version of the soft independent modeling of class analogy (DD‐SIMCA) model built based on multiplicative scatter correction (MSC) preprocessing has a sensitivity of 0.98 and a specificity of 0.91, able to effectively distinguish whether a sample of G. elata Bl. originates from Zhaotong. In addition, three discriminant models including support vector machine (SVM), partial least squares discriminant analysis (PLS‐DA), and three gradient boosting machine (GBM) algorithms built using the ensemble preprocessing approach have good classification and generalization capabilities. Among them, the SCSF‐PLS‐DA model has the best performance with 99.68% and 98.08% accuracy for the training and test sets, respectively, and F1 of 0.97; the SPORT‐SVM model achieved the second‐best classification ability. The results show that the ensemble preprocessing approach used can improve the success rate of G. elata Bl. geographical origin classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周小鱼发布了新的文献求助10
1秒前
吃小孩的妖怪完成签到 ,获得积分10
1秒前
独钓寒江雪完成签到 ,获得积分10
2秒前
3秒前
3秒前
giao完成签到,获得积分10
4秒前
本草石之寒温完成签到 ,获得积分10
7秒前
白子双完成签到,获得积分10
8秒前
罗鸯鸯发布了新的文献求助10
8秒前
代扁扁完成签到 ,获得积分10
8秒前
zhangzhang发布了新的文献求助30
8秒前
kanong完成签到,获得积分0
9秒前
科研阿白完成签到 ,获得积分10
13秒前
阳光的静白完成签到,获得积分10
16秒前
zhangzhang完成签到,获得积分10
17秒前
LT完成签到 ,获得积分0
23秒前
斯文的傲珊完成签到,获得积分10
24秒前
哭泣青烟完成签到 ,获得积分10
27秒前
海北完成签到 ,获得积分10
30秒前
沿途东行完成签到 ,获得积分10
33秒前
李健应助螃蟹医生采纳,获得10
38秒前
ET完成签到,获得积分10
50秒前
lili完成签到 ,获得积分10
52秒前
村上春树的摩的完成签到 ,获得积分10
54秒前
58秒前
aimanqiankun55完成签到 ,获得积分10
1分钟前
欣慰冬亦完成签到 ,获得积分10
1分钟前
summer完成签到,获得积分10
1分钟前
李东东完成签到 ,获得积分10
1分钟前
Present完成签到 ,获得积分10
1分钟前
Chen发布了新的文献求助10
1分钟前
zx完成签到 ,获得积分10
1分钟前
Chen完成签到,获得积分10
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
lucygaga完成签到 ,获得积分10
1分钟前
无为完成签到 ,获得积分10
1分钟前
liguanyu1078完成签到,获得积分10
1分钟前
辻诺完成签到 ,获得积分10
1分钟前
现实的大白完成签到 ,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792550
求助须知:如何正确求助?哪些是违规求助? 3336787
关于积分的说明 10282126
捐赠科研通 3053566
什么是DOI,文献DOI怎么找? 1675652
邀请新用户注册赠送积分活动 803629
科研通“疑难数据库(出版商)”最低求助积分说明 761468