ATR‐FTIR Spectroscopy Preprocessing Technique Selection for Identification of Geographical Origins of Gastrodia elata Blume

预处理器 人工智能 线性判别分析 模式识别(心理学) 数据预处理 计算机科学 偏最小二乘回归 极限学习机 支持向量机 数学 生物系统 机器学习 人工神经网络 生物
作者
Hong Liu,Honggao Liu,Jieqing Li,Yuanzhong Wang
出处
期刊:Journal of Chemometrics [Wiley]
卷期号:38 (10) 被引量:5
标识
DOI:10.1002/cem.3579
摘要

ABSTRACT Gastrodia elata Blume from different regions varies in growth conditions, soil types, and climate, which directly affects the content and quality of its medicinal components. Accurately identifying the origin can effectively ensure the medicinal value of G. elata Bl., prevent the circulation of counterfeit products, and thus protect the interests and health of consumers. Attenuated total reflectance Fourier transform infrared (ATR‐FTIR) spectroscopy is a rapid and effective method for verifying the authenticity of traditional Chinese medicines. However, the presence of scattering effects in the spectra poses challenges in establishing reliable discrimination models. Therefore, employing appropriate scattering correction techniques is crucial for improving the quality of spectral data and the accuracy of discrimination models. This study uses two ensemble preprocessing approaches; the first type is series fusion of scatter correction technologies (SCSF), and another method is sequential preprocessing through orthogonalization (SPORT). Four discriminant models were established using a single scattering correction technique and two ensemble preprocessing approaches. The results show that the data‐driven version of the soft independent modeling of class analogy (DD‐SIMCA) model built based on multiplicative scatter correction (MSC) preprocessing has a sensitivity of 0.98 and a specificity of 0.91, able to effectively distinguish whether a sample of G. elata Bl. originates from Zhaotong. In addition, three discriminant models including support vector machine (SVM), partial least squares discriminant analysis (PLS‐DA), and three gradient boosting machine (GBM) algorithms built using the ensemble preprocessing approach have good classification and generalization capabilities. Among them, the SCSF‐PLS‐DA model has the best performance with 99.68% and 98.08% accuracy for the training and test sets, respectively, and F1 of 0.97; the SPORT‐SVM model achieved the second‐best classification ability. The results show that the ensemble preprocessing approach used can improve the success rate of G. elata Bl. geographical origin classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤奋酒窝完成签到,获得积分10
刚刚
1秒前
Xiaoab完成签到,获得积分10
1秒前
2秒前
阳光的紫丝完成签到 ,获得积分10
2秒前
虚幻的茗发布了新的文献求助10
2秒前
3秒前
矮小的向雪完成签到,获得积分10
3秒前
MR_Z发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
4秒前
5秒前
零零零零完成签到,获得积分10
5秒前
星辰大海应助wenze采纳,获得10
5秒前
H71000A完成签到 ,获得积分10
5秒前
NexusExplorer应助WHDD采纳,获得30
6秒前
沉默香芦发布了新的文献求助10
6秒前
鱼仔完成签到,获得积分20
6秒前
6秒前
煊陌完成签到 ,获得积分10
6秒前
wolr发布了新的文献求助10
7秒前
rain完成签到,获得积分10
7秒前
Chauncy完成签到,获得积分10
7秒前
ZZZ发布了新的文献求助10
8秒前
东山发布了新的文献求助10
8秒前
wonderingria发布了新的文献求助10
8秒前
lrl发布了新的文献求助10
9秒前
Akim应助是小王ya采纳,获得10
9秒前
tigger发布了新的文献求助10
10秒前
ccm应助cugwzr采纳,获得10
11秒前
CipherSage应助虚拟初之采纳,获得10
11秒前
沉默香芦完成签到,获得积分20
11秒前
积极的夜香完成签到,获得积分10
12秒前
12秒前
jun应助加贝采纳,获得10
12秒前
充电宝应助lulu采纳,获得10
12秒前
科研通AI6应助趙途嘵生采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
yolo算法-游泳溺水检测数据集 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Further Studies on the Gold-Catalyzed Oxidative Domino Cyclization/Cycloaddition to Give Polyfunctional Tetracycles 400
The Start of the Start: Entrepreneurial Opportunity Identification and Evaluation 400
Simulation of High-NA EUV Lithography 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4298505
求助须知:如何正确求助?哪些是违规求助? 3823850
关于积分的说明 11970967
捐赠科研通 3465499
什么是DOI,文献DOI怎么找? 1900710
邀请新用户注册赠送积分活动 948528
科研通“疑难数据库(出版商)”最低求助积分说明 850876