Multi-Level Fusion for Robust RGBT Tracking via Enhanced Thermal Representation

融合 代表(政治) 跟踪(教育) 计算机科学 人工智能 计算机视觉 心理学 哲学 政治学 教育学 语言学 政治 法学
作者
Zhangyong Tang,Tianyang Xu,Xiao-Jun Wu,Josef Kittler
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:20 (10): 1-24 被引量:6
标识
DOI:10.1145/3678176
摘要

Due to the limitations of visible (RGB) sensors in challenging scenarios, such as nighttime and foggy environments, the thermal infrared (TIR) modality draws increasing attention as an auxiliary source for robust tracking systems. Currently, the existing methods extract both the RGB and TIR (RGBT) clues in a similar approach, i.e., utilising RGB-pretrained models with or without finetuning, and then aggregate the multi-modal information through a fusion block embedded in a single level. However, the different imaging principles of RGB and TIR data raise questions about the suitability of RGB-pretrained models for thermal data. In this article, it is argued that the modality gap is overlooked, and an alternative training paradigm is proposed for TIR data to ensure consistency between the training and test data, which is achieved by optimising the TIR feature extractor with only TIR data involved. Furthermore, with the goal of making better use of the enhanced thermal representations, a multi-level fusion strategy is inspired by the observation that various fusion strategies at different levels can contribute to a better performance. Specifically, fusion modules at both the feature and decision levels are derived for a comprehensive fusion procedure while the pixel-level fusion strategy is not considered due to the misalignment of multi-modal image pairs. The effectiveness of our method is demonstrated by extensive qualitative and quantitative experiments conducted on several challenging benchmarks. Code will be released at https://github.com/Zhangyong-Tang/MELT .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的粉丝团团长应助ZZ采纳,获得10
1秒前
Puffkten发布了新的文献求助10
1秒前
Tina发布了新的文献求助30
1秒前
ccc完成签到 ,获得积分10
1秒前
慕青应助cheng采纳,获得10
2秒前
uwasa完成签到,获得积分10
3秒前
3秒前
丸子发布了新的文献求助10
3秒前
xu完成签到,获得积分10
4秒前
烟花应助Yik采纳,获得10
5秒前
乐乐应助罗源采纳,获得10
6秒前
elliotzzz发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
ghy完成签到,获得积分10
8秒前
panpan111完成签到,获得积分10
9秒前
bkagyin应助丸子采纳,获得10
10秒前
ccy2023完成签到,获得积分10
10秒前
11111完成签到,获得积分10
11秒前
ding应助聪慧的凝海采纳,获得10
11秒前
脑洞疼应助xiaojinzi采纳,获得10
11秒前
安安完成签到,获得积分10
13秒前
14秒前
Tina完成签到,获得积分10
14秒前
14秒前
师震铎发布了新的文献求助10
15秒前
15秒前
Puffkten发布了新的文献求助10
15秒前
16秒前
舒适访彤发布了新的文献求助10
17秒前
淡定竺发布了新的文献求助10
17秒前
17秒前
Nuyoah完成签到 ,获得积分10
18秒前
18秒前
jackzzs完成签到,获得积分10
18秒前
一天完成签到 ,获得积分10
19秒前
12完成签到,获得积分10
19秒前
zywzyw完成签到,获得积分10
19秒前
20秒前
fighting完成签到,获得积分10
21秒前
999完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5553450
求助须知:如何正确求助?哪些是违规求助? 4637983
关于积分的说明 14651924
捐赠科研通 4579900
什么是DOI,文献DOI怎么找? 2511951
邀请新用户注册赠送积分活动 1486817
关于科研通互助平台的介绍 1457747