UNet‐based multi‐organ segmentation in photon counting CT using virtual monoenergetic images

分割 计算机科学 人工智能 图像分割 计算机视觉 模式识别(心理学)
作者
Sumin Baek,Dong Hye Ye,Okkyun Lee
出处
期刊:Medical Physics [Wiley]
被引量:1
标识
DOI:10.1002/mp.17440
摘要

Abstract Background Multi‐organ segmentation aids in disease diagnosis, treatment, and radiotherapy. The recently emerged photon counting detector‐based CT (PCCT) provides spectral information of the organs and the background tissue and may improve segmentation performance. Purpose We propose UNet‐based multi‐organ segmentation in PCCT using virtual monoenergetic images (VMI) to exploit spectral information effectively. Methods The proposed method consists of the following steps: Noise reduction in bin‐wise images, image‐based material decomposition, generating VMIs, and deep learning‐based segmentation. VMIs are synthesized for various x‐ray energies using basis images. The UNet‐based networks (3D UNet, Swin UNETR) were used for segmentation, and dice similarity coefficients (DSC) and 3D visualization of the segmented result were evaluation indicators. We validated the proposed method for the liver, pancreas, and spleen segmentation using abdominal phantoms from 55 subjects for dual‐ and quad‐energy bins. We compared it to the conventional PCCT‐based segmentation, which uses only the (noise‐reduced) bin‐wise images. The experiments were conducted on two cases by adjusting the dose levels. Results The proposed method improved the training stability for most cases. With the proposed method, the average DSC for the three organs slightly increased from 0.933 to 0.95, and the standard deviation decreased from 0.066 to 0.047, for example, in the low dose case (using VMIs v.s. bin‐wise images from dual‐energy bins; 3D UNet). Conclusions The proposed method using VMIs improves training stability for multi‐organ segmentation in PCCT, particularly when the number of energy bins is small.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科目三应助嘻鱼徐采纳,获得10
1秒前
1秒前
1秒前
封25发布了新的文献求助10
2秒前
dreamlightzy应助冷傲梦秋采纳,获得10
2秒前
cllj驳回了mcl应助
3秒前
3秒前
4秒前
Foch发布了新的文献求助10
5秒前
666完成签到,获得积分10
6秒前
6秒前
Mayer1234088发布了新的文献求助30
6秒前
6秒前
6秒前
8秒前
9秒前
9秒前
顾矜应助zzy采纳,获得10
9秒前
CipherSage应助受伤冰菱采纳,获得10
9秒前
鱼与木头发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
11秒前
dwas发布了新的文献求助10
12秒前
深情安青应助琦琦子采纳,获得10
13秒前
13秒前
14秒前
Niu发布了新的文献求助10
14秒前
AST完成签到,获得积分10
17秒前
17秒前
SYLH应助科研通管家采纳,获得30
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
ww发布了新的文献求助10
17秒前
852应助安然僧采纳,获得10
17秒前
打打应助科研通管家采纳,获得10
17秒前
一一应助科研通管家采纳,获得10
17秒前
17秒前
18秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870749
求助须知:如何正确求助?哪些是违规求助? 3412885
关于积分的说明 10681633
捐赠科研通 3137284
什么是DOI,文献DOI怎么找? 1730852
邀请新用户注册赠送积分活动 834413
科研通“疑难数据库(出版商)”最低求助积分说明 781154