亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hierarchical deep learning for autonomous multi-label arrhythmia detection and classification on real-world wearable electrocardiogram data

心律失常 人工智能 可穿戴计算机 F1得分 计算机科学 深度学习 二元分类 可穿戴技术 模式识别(心理学) 机器学习 医学 心房颤动 心脏病学 支持向量机 嵌入式系统
作者
Guangyao Zheng,Sunghan Lee,Jeonghwan Koh,Khushbu Pahwa,Haoran Li,Zicheng Xu,Haiming Sun,Junqiang Su,Sung Pil Cho,Sung Il Im,In Cheol Jeong,Vladimir Braverman
出处
期刊:Digital health [SAGE Publishing]
卷期号:10
标识
DOI:10.1177/20552076241278942
摘要

Objective Arrhythmia detection and classification are challenging because of the imbalanced ratio of normal heartbeats to arrhythmia heartbeats and the complicated combinations of arrhythmia types. Arrhythmia classification on wearable electrocardiogram monitoring devices poses a further unique challenge: unlike clinically used electrocardiogram monitoring devices, the environments in which wearable devices are deployed are drastically different from the carefully controlled clinical environment, leading to significantly more noise, thus making arrhythmia classification more difficult. Methods We propose a novel hierarchical model based on CNN+BiLSTM with Attention to arrhythmia detection, consisting of a binary classification module between normal and arrhythmia heartbeats and a multi-label classification module for classifying arrhythmia events across combinations of beat and rhythm arrhythmia types. We evaluate our method on our proprietary dataset and compare it with various baselines, including CNN+BiGRU with Attention, ConViT, EfficientNet, and ResNet, as well as previous state-of-the-art frameworks. Results Our model outperforms existing baselines on the proprietary dataset, resulting in an average accuracy, F1-score, and AUC score of 95%, 0.838, 0.906 for binary classification, and 88%, 0.736, 0.875 for multi-label classification. Conclusions Our results validate the ability of our model to detect and classify real-world arrhythmia. Our framework could revolutionize arrhythmia diagnosis by reducing the burden on cardiologists, providing more personalized treatment, and achieving emergency intervention of patients by allowing real-time monitoring of arrhythmia occurrence.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
材料摆渡人完成签到 ,获得积分10
4秒前
4秒前
5秒前
6秒前
sdniuidifod发布了新的文献求助10
10秒前
1206425219密完成签到,获得积分10
11秒前
cindy发布了新的文献求助10
13秒前
13秒前
香蕉觅云应助冰冰采纳,获得10
19秒前
小二郎应助sdniuidifod采纳,获得10
20秒前
21秒前
firesquall发布了新的文献求助10
25秒前
26秒前
AAA咸鱼批发完成签到 ,获得积分10
26秒前
29秒前
冰冰发布了新的文献求助10
31秒前
丘比特应助绝尘采纳,获得10
34秒前
Juan_He完成签到,获得积分10
36秒前
冷静新烟完成签到,获得积分10
42秒前
gk123kk完成签到,获得积分0
42秒前
SciGPT应助zzy采纳,获得10
44秒前
47秒前
华仔应助iui飞采纳,获得10
49秒前
49秒前
科研难发布了新的文献求助10
54秒前
57秒前
科研通AI2S应助Billy采纳,获得10
58秒前
科研难完成签到,获得积分0
1分钟前
1分钟前
么么么发布了新的文献求助10
1分钟前
frap完成签到,获得积分0
1分钟前
杨无敌完成签到 ,获得积分10
1分钟前
Glitter完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
想要赚大钱完成签到,获得积分10
1分钟前
11发布了新的文献求助10
1分钟前
李荷花完成签到 ,获得积分10
1分钟前
韦雪莲完成签到 ,获得积分10
1分钟前
hhhhhhhhhh完成签到 ,获得积分10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800880
求助须知:如何正确求助?哪些是违规求助? 3346402
关于积分的说明 10329217
捐赠科研通 3062864
什么是DOI,文献DOI怎么找? 1681220
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763702