Hierarchical deep learning for autonomous multi-label arrhythmia detection and classification on real-world wearable electrocardiogram data

心律失常 人工智能 可穿戴计算机 F1得分 计算机科学 深度学习 二元分类 可穿戴技术 模式识别(心理学) 机器学习 医学 心房颤动 心脏病学 支持向量机 嵌入式系统
作者
Guangyao Zheng,Sunghan Lee,Jeonghwan Koh,Khushbu Pahwa,Haoran Li,Zicheng Xu,Haiming Sun,Junqiang Su,Sung Pil Cho,Sung Il Im,In Cheol Jeong,Vladimir Braverman
出处
期刊:Digital health [SAGE Publishing]
卷期号:10
标识
DOI:10.1177/20552076241278942
摘要

Objective Arrhythmia detection and classification are challenging because of the imbalanced ratio of normal heartbeats to arrhythmia heartbeats and the complicated combinations of arrhythmia types. Arrhythmia classification on wearable electrocardiogram monitoring devices poses a further unique challenge: unlike clinically used electrocardiogram monitoring devices, the environments in which wearable devices are deployed are drastically different from the carefully controlled clinical environment, leading to significantly more noise, thus making arrhythmia classification more difficult. Methods We propose a novel hierarchical model based on CNN+BiLSTM with Attention to arrhythmia detection, consisting of a binary classification module between normal and arrhythmia heartbeats and a multi-label classification module for classifying arrhythmia events across combinations of beat and rhythm arrhythmia types. We evaluate our method on our proprietary dataset and compare it with various baselines, including CNN+BiGRU with Attention, ConViT, EfficientNet, and ResNet, as well as previous state-of-the-art frameworks. Results Our model outperforms existing baselines on the proprietary dataset, resulting in an average accuracy, F1-score, and AUC score of 95%, 0.838, 0.906 for binary classification, and 88%, 0.736, 0.875 for multi-label classification. Conclusions Our results validate the ability of our model to detect and classify real-world arrhythmia. Our framework could revolutionize arrhythmia diagnosis by reducing the burden on cardiologists, providing more personalized treatment, and achieving emergency intervention of patients by allowing real-time monitoring of arrhythmia occurrence.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
yue发布了新的文献求助10
3秒前
脑洞疼应助IL空空采纳,获得10
3秒前
0206发布了新的文献求助10
3秒前
西门子云完成签到,获得积分10
4秒前
思源应助瀼瀼采纳,获得10
5秒前
桐桐应助54采纳,获得10
5秒前
朴树朋友完成签到,获得积分10
5秒前
6秒前
6秒前
gyusbjshaxb完成签到,获得积分10
8秒前
8秒前
woshibyu完成签到 ,获得积分10
8秒前
yuaasusanaann发布了新的文献求助10
10秒前
10秒前
Billy应助U9A采纳,获得30
12秒前
Aventen完成签到,获得积分10
12秒前
12秒前
12秒前
YHT完成签到,获得积分10
13秒前
nkpdsy完成签到,获得积分10
14秒前
hoongyan完成签到 ,获得积分10
14秒前
cjlinhunu发布了新的文献求助10
15秒前
15秒前
小蘑菇应助朴实香之采纳,获得10
15秒前
高兴不尤完成签到,获得积分10
16秒前
nkpdsy发布了新的文献求助10
16秒前
充电宝应助Vincent采纳,获得10
17秒前
小冉不熬夜完成签到 ,获得积分10
17秒前
54完成签到,获得积分10
18秒前
沉默烨霖发布了新的文献求助10
19秒前
Lynn完成签到 ,获得积分10
20秒前
万能图书馆应助Ricky采纳,获得10
22秒前
sibo完成签到,获得积分10
23秒前
24秒前
24秒前
庾天磊完成签到 ,获得积分10
24秒前
25秒前
欧阳铭发布了新的文献求助10
27秒前
lin发布了新的文献求助10
29秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4005993
求助须知:如何正确求助?哪些是违规求助? 3545917
关于积分的说明 11294361
捐赠科研通 3281886
什么是DOI,文献DOI怎么找? 1809798
邀请新用户注册赠送积分活动 885568
科研通“疑难数据库(出版商)”最低求助积分说明 811048