Development and validation of a machine learning–based model for varices screening in compensated cirrhosis (CHESS2001): an international multicenter study

医学 肝硬化 内科学 静脉曲张 多中心研究 医学物理学 普通外科 随机对照试验
作者
Yifei Huang,Jia Li,Tianlei Zheng,Dong Ji,Yu Jun Wong,Hong You,Ye Gu,Musong Li,Lili Zhao,Shuang Li,Shi Geng,Na Yang,Guofeng Chen,Yan Wang,Manoj Kumar,Ankur Jindal,Wei Qin,Zhenhuai Chen,Yongning Xin,Zicheng Jiang
出处
期刊:Gastrointestinal Endoscopy [Elsevier BV]
卷期号:97 (3): 435-444.e2 被引量:9
标识
DOI:10.1016/j.gie.2022.10.018
摘要

Background and Aims

The prevalence of high-risk varices (HRV) is low among compensated cirrhotic patients undergoing EGD. Our study aimed to identify a novel machine learning (ML)-based model, named ML EGD, for ruling out HRV and avoiding unnecessary EGDs in patients with compensated cirrhosis.

Methods

An international cohort from 17 institutions from China, Singapore, and India were enrolled (CHESS2001). The variables with the top 3 importance scores (liver stiffness, platelet count, and total bilirubin) were selected by the Shapley additive explanation and input into a light gradient-boosting machine algorithm to develop ML EGD for identification of HRV. Furthermore, we built a web-based calculator for ML EGD, which is free with open access (http://www.pan-chess.cn/calculator/MLEGD_score). Unnecessary EGDs that were not performed and the rates of missed HRV were used to assess the efficacy and safety for varices screening.

Results

Of 2794 enrolled patients, 1283 patients formed a real-world cohort from 1 university hospital in China used to develop and internally validate the performance of ML EGD for varices screening. They were randomly assigned into the training (n = 1154) and validation (n = 129) cohorts with a ratio of 9:1. In the training cohort, ML EGD spared 607 (52.6%) unnecessary EGDs with a missed HRV rate of 3.6%. In the validation cohort, ML EGD spared 75 (58.1%) EGDs with a missed HRV rate of 1.4%. To externally test the performance of ML EGD, 966 patients from 14 university hospitals in China (test cohort 1) and 545 from 2 hospitals in Singapore and India (test cohort 2) comprised the 2 test cohorts. In test cohort 1, ML EGD spared 506 (52.4%) EGDs with a missed HRV rate of 2.8%. In test cohort 2, ML EGD spared 224 (41.1%) EGDs with a missed HRV rate of 3.1%. When compared with the Baveno VI criteria, ML EGD spared more screening EGDs in all cohorts (training cohort, 52.6% vs 29.4%; validation cohort, 58.1% vs 44.2%; test cohort 1, 52.4% vs 26.5%; test cohort 2, 41.1% vs 21.1%, respectively; P < .001).

Conclusions

We identified a novel model based on liver stiffness, platelet count, and total bilirubin, named ML EGD, as a free web-based calculator. ML EGD could efficiently help rule out HRV and avoid unnecessary EGDs in patients with compensated cirrhosis. (Clinical trial registration number: NCT04307264.)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助悦悦呀采纳,获得10
1秒前
Rachel完成签到,获得积分10
1秒前
2秒前
2秒前
烟花应助zzrg采纳,获得20
2秒前
3秒前
4秒前
4秒前
文静秋双完成签到,获得积分10
4秒前
4秒前
WaveletZ完成签到,获得积分10
5秒前
可爱的盼晴完成签到,获得积分10
5秒前
周小鱼发布了新的文献求助10
5秒前
老实易蓉应助piaoaxi采纳,获得20
5秒前
东东有点樊完成签到,获得积分10
5秒前
6秒前
6秒前
夏末发布了新的文献求助10
7秒前
开放惜寒完成签到,获得积分10
7秒前
7秒前
在水一方应助凝凝小采纳,获得10
8秒前
pbj发布了新的文献求助10
8秒前
9秒前
9秒前
灵巧的之瑶完成签到,获得积分20
9秒前
10秒前
10秒前
DrLecter完成签到,获得积分10
10秒前
梦里格斗家完成签到,获得积分10
10秒前
坦率邪欢完成签到,获得积分10
10秒前
xxxd完成签到,获得积分10
10秒前
耍酷糜完成签到 ,获得积分10
10秒前
bkagyin应助zhangman采纳,获得10
11秒前
11秒前
Dawn完成签到 ,获得积分10
11秒前
隐形曼青应助唐磊采纳,获得10
11秒前
人来人往发布了新的文献求助10
11秒前
11秒前
lehha完成签到,获得积分10
11秒前
12秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
System of systems: When services and products become indistinguishable 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813277
求助须知:如何正确求助?哪些是违规求助? 3357756
关于积分的说明 10388193
捐赠科研通 3074954
什么是DOI,文献DOI怎么找? 1689097
邀请新用户注册赠送积分活动 812548
科研通“疑难数据库(出版商)”最低求助积分说明 767178