亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Reinforcement Learning Enabled Nanophotonic Devices

作者
Zi Wang,Junyeob Song,Minsuk Lee,Wenqi Zhu,Amit Agrawal
出处
期刊:Laser & Photonics Reviews [Wiley]
标识
DOI:10.1002/lpor.202501347
摘要

Abstract Controlling multiple degrees of freedom of light in a small‐footprint with high‐efficiency in a foundry‐manufacturable platform is foundational for a range of classical and quantum technologies. Achieving this requires photonic design strategies that go beyond traditional physical intuition‐based methods. Reinforcement learning (RL), a subset of machine learning, is successful in achieving optimum outcomes in dynamically evolving environments, e.g., in strategy games or self‐driving cars. Here, a novel paradigm based on reinforcement learning is presented for photonic device design, and multifunctional metasurface optics and integrated photonic devices operating in the visible are realized. RL‐based metasurface optics operating at free‐space wavelengths of 461 and 689 nm designed are fabricated and experimentally characterized to simultaneously deflect input light at large deflection angles and maintain or change its polarization. Further, the RL approach is used to design in‐plane integrated photonic devices such as bends, mode‐converters, wavelength demultiplexers, and beamsplitters, as well as waveguide‐coupled grating out‐couplers to both control the angle of the out‐of‐plane beam emission and polarization at visible wavelengths on a silicon nitride platform. The results, targeting a two‐color strontium magneto‐optical trap for the realization of a portable, alignment‐free optical lattice clock, elucidate the potential of reinforcement learning for the design of high‐performance optics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
kuoping完成签到,获得积分0
16秒前
20秒前
26秒前
TXZ06发布了新的文献求助30
38秒前
47秒前
49秒前
50秒前
Yuuuan完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
blenx完成签到,获得积分10
1分钟前
笑点低涵雁完成签到,获得积分10
1分钟前
嘻嘻完成签到,获得积分10
1分钟前
1分钟前
我是老大应助悠悠采纳,获得10
1分钟前
深情安青应助成成鹅了采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
成成鹅了发布了新的文献求助10
2分钟前
2分钟前
包容的睫毛膏完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
TXZ06发布了新的文献求助30
2分钟前
2分钟前
2分钟前
丘比特应助包容的睫毛膏采纳,获得20
2分钟前
2分钟前
悠悠发布了新的文献求助10
2分钟前
2分钟前
3分钟前
悠悠完成签到,获得积分20
3分钟前
3分钟前
3分钟前
3分钟前
andrele发布了新的文献求助100
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634920
求助须知:如何正确求助?哪些是违规求助? 4734247
关于积分的说明 14989490
捐赠科研通 4792667
什么是DOI,文献DOI怎么找? 2559733
邀请新用户注册赠送积分活动 1520066
关于科研通互助平台的介绍 1480128