材料科学
吸附
调制(音乐)
对偶(语法数字)
不对称
纳米技术
化学工程
物理化学
物理
量子力学
声学
文学类
工程类
艺术
化学
作者
Zhaolei Liu,Jian Zhou,Su‐Xian Yuan,Meng‐Ran Zhang,Min Zhang,Xingqiang Lü
标识
DOI:10.1002/adfm.202523126
摘要
Abstract Solar‐driven hydrogen peroxide (H 2 O 2 ) synthesis via oxygen reduction reaction (ORR) offers a sustainable alternative to the energy‐intensive anthraquinone process, but suffers from sluggish kinetics and poor two‐electron selectivity. Herein, asymmetric boron/fluorine/cyano triply functionalized g‐C 3 N 4 nanosheets (g‐C 3 N 4 ‐B10) are engineered to simultaneously modulate the electronic structure and O 2 adsorption behavior. The structural asymmetry narrows the bandgap and activates n‐π* transitions, enhancing visible light harvesting and suppressing charge recombination. Adsorption engineering selectively shifts molecular oxygen activation from the Pauling‐type (end‐on) to Yeager‐type (side‐on) chemisorption, steering ORR toward a thermodynamically favorable one‐step two‐electron pathway. These synergistic effects enable g‐C 3 N 4 ‐B10 to achieve an H 2 O 2 production rate of 2952 µmol g −1 h −1 under visible light (100 mW cm −2 ) in pure water, representing a 14.3 fold enhancement over pristine g‐C 3 N 4 and outperforming other reported g‐C 3 N 4 ‐based catalysts. This work provides a molecular‐level design strategy for high‐efficiency solar H 2 O 2 production via asymmetric active‐site engineering.
科研通智能强力驱动
Strongly Powered by AbleSci AI