Feline calicivirus (FCV) is among the few members of the Caliciviridae family that can replicate efficiently in vitro. Our recent studies have found the Transferrin Receptor Protein (TFRC) is an entry receptor that facilitates the internalization of FCV. To explore the potential involvement of additional host factors in conjunction with TFRC during the viral entry process, we identified metabotropic glutamate receptor 2 (mGluR2) as a specific interacting partner for both TFRC and the FCV VP1 protein by Co-IP analysis. Our findings indicate that the downregulation of mGluR2, along with its downstream signaling molecule, Calcium-activated potassium channel subunit alpha-1 (KCa1.1), significantly inhibits FCV replication by impairing viral internalization. Importantly, the knockout of TFRC did not diminish the effects of mGluR2 and KCa1.1 on FCV infection. Furthermore, mGluR2 was found to interact directly with FCV VP1, rather than with TFRC, and the rate of F-actin polymerization induced by FCV infection was reduced solely by the downregulation of mGluR2 protein expression, not by TFRC knockout. These results suggest that mGluR2 may independently mediate FCV internalization, operating independently of TFRC, and plays a critical role in the formation of endocytic vesicles. Overall, the results indicate that multiple host factors, including TFRC and mGluR2, are involved in the internalization of FCV into host cells. Further research is necessary to explore the propagation of other caliciviruses, such as norovirus, in vitro.