Predicting Angle of Internal Friction and Cohesion of Rocks Based on Machine Learning Algorithms

均方误差 凝聚力(化学) 支持向量机 算法 决定系数 机器学习 摩擦角 人工智能 数学 计算机科学 统计 岩土工程 地质学 有机化学 化学
作者
Niaz Muhammad Shahani,Barkat Ullah,Kausar Sultan Shah,Fawad Ul Hassan,Rashid Ali,Mohamed Abdelghany Elkotb,Mohamed E. Ghoneim,Sayed M. Eldin
出处
期刊:Mathematics [MDPI AG]
卷期号:10 (20): 3875-3875 被引量:22
标识
DOI:10.3390/math10203875
摘要

The safe and sustainable design of rock slopes, open-pit mines, tunnels, foundations, and underground excavations requires appropriate and reliable estimation of rock strength and deformation characteristics. Cohesion (𝑐) and angle of internal friction (𝜑) are the two key parameters widely used to characterize the shear strength of materials. Thus, the prediction of these parameters is essential to evaluate the deformation and stability of any rock formation. In this study, four advanced machine learning (ML)-based intelligent prediction models, namely Lasso regression (LR), ridge regression (RR), decision tree (DT), and support vector machine (SVM), were developed to predict 𝑐 in (MPa) and 𝜑 in (°), with P-wave velocity in (m/s), density in (gm/cc), UCS in (MPa), and tensile strength in (MPa) as input parameters. The actual dataset having 199 data points with no missing data was allocated identically for each model with 70% for training and 30% for testing purposes. To enhance the performance of the developed models, an iterative 5-fold cross-validation method was used. The coefficient of determination (R2), mean absolute error (MAE), mean square error (MSE), root mean square error (RMSE), and a10-index were used as performance metrics to evaluate the optimal prediction model. The results revealed the SVM to be a more efficient model in predicting 𝑐 (R2 = 0.977) and 𝜑 (R2 = 0.916) than LR (𝑐: R2 = 0.928 and 𝜑: R2 = 0.606), RR (𝑐: R2 = 0.961 and 𝜑: R2 = 0.822), and DT (𝑐: R2 = 0.934 and 𝜑: R2 = 0.607) on the testing data. Furthermore, to check the level of accuracy of the SVM model, a sensitivity analysis was performed on the testing data. The results showed that UCS and tensile strength were the most influential parameters in predicting 𝑐 and 𝜑. The findings of this study contribute to long-term stability and deformation evaluation of rock masses in surface and subsurface rock excavations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
秀儿发布了新的文献求助10
1秒前
忠诚卫士发布了新的文献求助10
1秒前
更深的蓝发布了新的文献求助10
1秒前
平常冬灵完成签到,获得积分10
3秒前
3秒前
穆亦擎发布了新的文献求助10
4秒前
5秒前
Hello应助musicyy222采纳,获得10
6秒前
7秒前
更深的蓝完成签到,获得积分10
7秒前
英吉利25发布了新的文献求助30
8秒前
8秒前
韩韩发布了新的文献求助10
9秒前
10秒前
10秒前
张姣姣发布了新的文献求助10
13秒前
研友_VZGvVn发布了新的文献求助10
13秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
yyds应助xuan采纳,获得50
16秒前
研友_VZGvVn完成签到,获得积分10
17秒前
18秒前
善学以致用应助echo采纳,获得10
19秒前
小二郎应助想吃脆脆采纳,获得10
19秒前
19秒前
20秒前
秀儿完成签到,获得积分10
20秒前
21秒前
21秒前
wuqi发布了新的文献求助10
21秒前
23秒前
科目三应助韩韩采纳,获得10
24秒前
Ava应助阿难采纳,获得10
24秒前
whysoserious发布了新的文献求助50
25秒前
25秒前
新世界陆战队完成签到 ,获得积分10
25秒前
26秒前
大模型应助Judy采纳,获得10
26秒前
无极微光应助奶油采纳,获得20
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532789
求助须知:如何正确求助?哪些是违规求助? 4621444
关于积分的说明 14578210
捐赠科研通 4561414
什么是DOI,文献DOI怎么找? 2499282
邀请新用户注册赠送积分活动 1479215
关于科研通互助平台的介绍 1450443