Metabolic profile predicts incident cancer: A large-scale population study in the UK Biobank

医学 危险系数 内科学 癌症 四分位间距 肝癌 肿瘤科 优势比 人口 癌症登记处 置信区间 环境卫生
作者
Muktar Beshir Ahmed,Ville‐Petteri Mäkinen,Amanda L. Lumsden,Terry Boyle,Anwar Mulugeta,Sang Lee,Ian Olver,Elina Hyppönen
出处
期刊:Metabolism-clinical and Experimental [Elsevier BV]
卷期号:138: 155342-155342 被引量:21
标识
DOI:10.1016/j.metabol.2022.155342
摘要

Background and aims Analyses to predict the risk of cancer typically focus on single biomarkers, which do not capture their complex interrelations. We hypothesized that the use of metabolic profiles may provide new insights into cancer prediction. Methods We used information from 290,888 UK Biobank participants aged 37 to 73 years at baseline. Metabolic subgroups were defined based on clustering of biochemical data using an artificial neural network approach and examined for their association with incident cancers identified through linkage to cancer registry. In addition, we evaluated associations between 38 individual biomarkers and cancer risk. Results In total, 21,973 individuals developed cancer during the follow-up (median 3.87 years, interquartile range [IQR] = 2.03–5.58). Compared to the metabolically favorable subgroup (IV), subgroup III (defined as "high BMI, C-reactive protein & cystatin C") was associated with a higher risk of obesity-related cancers (hazard ratio [HR] = 1.26, 95 % CI = 1.21 to 1.32) and hematologic-malignancies (e.g., lymphoid leukemia: HR = 1.83, 95%CI = 1.44 to 2.33). Subgroup II ("high triglycerides & liver enzymes") was strongly associated with liver cancer risk (HR = 5.70, 95%CI = 3.57 to 9.11). Analysis of individual biomarkers showed a positive association between testosterone and greater risks of hormone-sensitive cancers (HR per SD higher = 1.32, 95%CI = 1.23 to 1.44), and liver cancer (HR = 2.49, 95%CI =1.47 to 4.24). Many liver tests were individually associated with a greater risk of liver cancer with the strongest association observed for gamma-glutamyl transferase (HR = 2.40, 95%CI = 2.19 to 2.65). Conclusions Metabolic profile in middle-to-older age can predict cancer incidence, in particular risk of obesity-related cancer, hematologic malignancies, and liver cancer. Elevated values from liver tests are strong predictors for later risk of liver cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Jes完成签到,获得积分10
4秒前
斯文败类应助哈哈采纳,获得10
4秒前
6秒前
dada完成签到 ,获得积分10
7秒前
魔幻的妖丽完成签到 ,获得积分10
11秒前
Jasper应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
Owen应助科研通管家采纳,获得10
13秒前
14秒前
bkagyin应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
无花果应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
wwww完成签到 ,获得积分10
18秒前
19秒前
1111完成签到 ,获得积分10
22秒前
Jeson完成签到,获得积分10
24秒前
29秒前
30秒前
35秒前
段段发布了新的文献求助10
35秒前
杨欢发布了新的文献求助10
39秒前
43秒前
50秒前
53秒前
cossen完成签到,获得积分10
57秒前
57秒前
Rose完成签到,获得积分10
1分钟前
1分钟前
王哪跑12发布了新的文献求助20
1分钟前
隐形曼青应助入戏太深采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
EKo完成签到,获得积分10
1分钟前
Xuhao23完成签到,获得积分10
1分钟前
红宝石设计局完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776514
求助须知:如何正确求助?哪些是违规求助? 3321990
关于积分的说明 10208390
捐赠科研通 3037297
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757872