Channel attention generative adversarial network for super-resolution of glioma magnetic resonance image

鉴别器 计算机科学 磁共振成像 胶质瘤 均方误差 人工智能 块(置换群论) 发电机(电路理论) 模式识别(心理学) 算法 数学 医学 放射科 统计 电信 物理 功率(物理) 几何学 癌症研究 量子力学 探测器
作者
Zhaoyang Song,Defu Qiu,Xiaoqiang Zhao,Dongmei Lin,Yongyong Hui
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:229: 107255-107255
标识
DOI:10.1016/j.cmpb.2022.107255
摘要

Glioma is the most common primary craniocerebral tumor caused by the cancelation of glial cells in the brain and spinal cord, with a high incidence and cure rate. Magnetic resonance imaging (MRI) is a common technique for detecting and analyzing brain tumors. Due to improper hardware and operation, the obtained brain MRI images are low-resolution, making it difficult to detect and grade gliomas accurately. However, super-resolution reconstruction technology can improve the clarity of MRI images and help experts accurately detect and grade glioma.We propose a glioma magnetic resonance image super-resolution reconstruction method based on channel attention generative adversarial network (CGAN). First, we replace the base block of SRGAN with a residual dense block based on the channel attention mechanism. Second, we adopt a relative average discriminator to replace the discriminator in standard GAN. Finally, we add the mean squared error loss to the training, consisting of the mean squared error loss, the L1 norm loss, and the generator's adversarial loss to form the generator loss function.On the Set5, Set14, Urban100, and glioma datasets, compared with the state-of-the-art algorithms, our proposed CGAN method has improved peak signal-to-noise ratio and structural similarity, and the reconstructed glioma images are more precise than other algorithms.The experimental results show that our CGAN method has apparent improvements in objective evaluation indicators and subjective visual effects, indicating its effectiveness and superiority.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhuhaot发布了新的文献求助50
刚刚
终于开始完成签到,获得积分20
2秒前
2秒前
兴奋大马喽完成签到,获得积分10
2秒前
终于开始发布了新的文献求助10
5秒前
ZJX完成签到,获得积分10
5秒前
善学以致用应助meng采纳,获得10
7秒前
上官若男应助隐形黄蜂采纳,获得10
8秒前
外向的纸飞机完成签到,获得积分10
8秒前
8秒前
浅色墨水完成签到,获得积分10
9秒前
Kayla完成签到 ,获得积分10
9秒前
河豚不擦鞋完成签到 ,获得积分10
10秒前
脑洞疼应助小橙子采纳,获得30
11秒前
11秒前
懂梦发布了新的文献求助10
13秒前
Ayumi给Ayumi的求助进行了留言
13秒前
布医发布了新的文献求助10
14秒前
16秒前
斯文败类应助bm采纳,获得10
16秒前
调皮的老王头完成签到,获得积分10
17秒前
17秒前
zho发布了新的文献求助10
17秒前
TAOS完成签到 ,获得积分10
17秒前
647完成签到,获得积分10
20秒前
GAO发布了新的文献求助10
21秒前
Lancelot13发布了新的文献求助10
21秒前
汉堡包应助靖柔采纳,获得10
22秒前
22秒前
22秒前
清爽的一笑完成签到,获得积分10
23秒前
eee完成签到,获得积分10
23秒前
布医完成签到,获得积分10
25秒前
serpant完成签到,获得积分10
26秒前
热心枕头完成签到,获得积分10
26秒前
28秒前
28秒前
雪白雪旋发布了新的文献求助10
29秒前
受伤翠容完成签到,获得积分20
29秒前
ZZZ完成签到,获得积分10
30秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805322
求助须知:如何正确求助?哪些是违规求助? 3350279
关于积分的说明 10348304
捐赠科研通 3066188
什么是DOI,文献DOI怎么找? 1683602
邀请新用户注册赠送积分活动 809099
科研通“疑难数据库(出版商)”最低求助积分说明 765225