The Time-Varying Nature of Electromechanical Delay and Muscle Control Effectiveness in Response to Stimulation-Induced Fatigue

等长运动 肌肉疲劳 功能性电刺激 刺激 物理医学与康复 脉搏(音乐) 生物医学工程 控制器(灌溉) 控制理论(社会学) 火车 医学 计算机科学 肌电图 物理疗法 控制(管理) 人工智能 内科学 地理 地图学 探测器 生物 农学 电信
作者
Ryan J. Downey,Manelle Mérad,Eric J. Gonzalez,Warren E. Dixon
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:25 (9): 1397-1408 被引量:59
标识
DOI:10.1109/tnsre.2016.2626471
摘要

Neuromuscular electrical stimulation (NMES) and Functional Electrical Stimulation (FES) are commonly prescribed rehabilitative therapies. Closed-loop NMES holds the promise to yield more accurate limb control, which could enable new rehabilitative procedures. However, NMES/FES can rapidly fatigue muscle, which limits potential treatments and presents several control challenges. Specifically, the stimulation intensity-force relation changes as the muscle fatigues. Additionally, the delayed response between the application of stimulation and muscle force production, termed electromechanical delay (EMD), may increase with fatigue. This paper quantifies these effects. Specifically, open-loop fatiguing protocols were applied to the quadriceps femoris muscle group of able-bodied individuals under isometric conditions, and the resulting torque was recorded. Short pulse trains were used to measure EMD with a thresholding method while long duration pulse trains were used to induce fatigue, measure EMD with a cross-correlation method, and construct recruitment curves. EMD was found to increase significantly with fatigue, and the control effectiveness (i.e., the linear slope of the recruitment curve) decreased with fatigue. Outcomes of these experiments indicate an opportunity for improved closed-loop NMES/FES control development by considering EMD to be time-varying and by considering the muscle recruitment curve to be a nonlinear, time-varying function of the stimulation input.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪闪的诗珊应助曦曦采纳,获得10
1秒前
隐形水香完成签到 ,获得积分10
1秒前
1秒前
2秒前
hohn发布了新的文献求助10
2秒前
重要的平灵完成签到 ,获得积分10
3秒前
斯文败类应助Arizaq采纳,获得10
4秒前
哈哈发布了新的文献求助30
4秒前
科研通AI6.1应助mm采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
科研通AI6.1应助朝花_拾采纳,获得50
7秒前
李君然完成签到,获得积分10
7秒前
yurenxiaojie完成签到,获得积分10
7秒前
刘月茹发布了新的文献求助10
9秒前
七月发布了新的文献求助10
9秒前
yan完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
壮观果汁应助爱笑的钢笔采纳,获得10
14秒前
chongmu完成签到,获得积分10
14秒前
15秒前
充电宝应助热心的问儿采纳,获得10
15秒前
Arizaq发布了新的文献求助10
17秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
BowieHuang应助Wynne采纳,获得10
19秒前
MOON发布了新的文献求助10
19秒前
李健应助不周山僵尸采纳,获得10
19秒前
bkagyin应助jewel9采纳,获得10
20秒前
科研通AI2S应助yurenxiaojie采纳,获得10
20秒前
852应助哈哈采纳,获得10
20秒前
ding应助123456789采纳,获得10
20秒前
21秒前
酷炫的雪珊完成签到 ,获得积分10
21秒前
21秒前
听话的帆布鞋完成签到,获得积分10
22秒前
Orange应助韩小韩采纳,获得10
23秒前
李健应助刘月茹采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5777273
求助须知:如何正确求助?哪些是违规求助? 5632929
关于积分的说明 15445517
捐赠科研通 4909292
什么是DOI,文献DOI怎么找? 2641678
邀请新用户注册赠送积分活动 1589644
关于科研通互助平台的介绍 1544118