间充质干细胞
牛血清白蛋白
磁性纳米粒子
材料科学
生物物理学
骨钙素
细胞生物学
干细胞
静磁学
磁场
纳米技术
化学
纳米颗粒
碱性磷酸酶
生物
生物化学
酶
物理
量子力学
作者
Pengfei Jiang,Yixian Zhang,Chaonan Zhu,Wenjing Zhang,Zhengwei Mao,Changyou Gao
标识
DOI:10.1016/j.actbio.2016.09.020
摘要
Differentiation of stem cells is influenced by many factors, yet uptake of the magnetic particles with or without magnetic field is rarely tackled. In this study, iron oxide nanoparticles-loaded bovine serum albumin (BSA) (Fe3O4/BSA) particles were prepared, which showed a spherical morphology with a diameter below 200 nm, negatively charged surface, and tunable magnetic property. The particles could be internalized into bone marrow mesenchymal stem cells (MSCs), and their release from the cells was significantly retarded under external magnetic field, resulting in almost twice intracellular amount of the particles within 21 d compared to that of the magnetic field free control. Uptake of the Fe3O4/BSA particles enhanced significantly the osteogenic differentiation of MSCs under a static magnetic field, as evidenced by elevated alkaline phosphatase (ALP) activity, calcium deposition, and expressions of collagen type I and osteocalcin at both mRNA and protein levels. Therefore, uptake of the Fe3O4/BSA particles brings significant influence on the differentiation of MSCs under magnetic field, and thereby should be paid great attention for practical applications. Differentiation of stem cells is influenced by many factors, yet uptake of the magnetic particles with or without magnetic field is rarely tackled. In this study, iron oxide nanoparticles-loaded bovine serum albumin (BSA) (Fe3O4/BSA) particles with a diameter below 200 nm, negatively charged surface, tunable Fe3O4 content and subsequently adjustable magnetic property were prepared. The particles could be internalized into bone marrow mesenchymal stem cells (MSCs), and their release from the cells was significantly retarded under external magnetic field. Uptake of the Fe3O4/BSA particles enhanced significantly the osteogenic differentiation of MSCs under a constant static magnetic field, while the magnetic particles and external magnetic field alone do not influence significantly the osteogenic differentiation potential of MSCs regardless of the uptake amount. The results demonstrate a potential magnetic manipulation method for stem cell differentiation, and also convey the significance of careful evaluation of the safety issue of magnetic particles in real an application situation.
科研通智能强力驱动
Strongly Powered by AbleSci AI