弗斯
逻辑回归
统计
计量经济学
回归
计算机科学
罕见事件
数学
地质学
海洋学
作者
Rainer Puhr,Georg Heinze,Mariana Nold,Lara Lusa,Angelika Geroldinger
摘要
Firth-type logistic regression has become a standard approach for the analysis of binary outcomes with small samples. Whereas it reduces the bias in maximum likelihood estimates of coefficients, bias towards 1/2 is introduced in the predicted probabilities. The stronger the imbalance of the outcome, the more severe is the bias in the predicted probabilities. We propose two simple modifications of Firth-type logistic regression resulting in unbiased predicted probabilities. The first corrects the predicted probabilities by a post-hoc adjustment of the intercept. The other is based on an alternative formulation of Firth-types estimation as an iterative data augmentation procedure. Our suggested modification consists in introducing an indicator variable which distinguishes between original and pseudo observations in the augmented data. In a comprehensive simulation study these approaches are compared to other attempts to improve predictions based on Firth-type penalization and to other published penalization strategies intended for routine use. For instance, we consider a recently suggested compromise between maximum likelihood and Firth-type logistic regression. Simulation results are scrutinized both with regard to prediction and regression coefficients. Finally, the methods considered are illustrated and compared for a study on arterial closure devices in minimally invasive cardiac surgery.
科研通智能强力驱动
Strongly Powered by AbleSci AI