已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

NLRP6: A Multifaceted Innate Immune Sensor

炎症体 先天免疫系统 生物 细胞生物学 免疫系统 免疫学 抗菌肽 微生物学 炎症 抗菌剂
作者
Maayan Levy,Hagit Shapiro,Christoph A. Thaiss,Eran Elinav
出处
期刊:Trends in Immunology [Elsevier BV]
卷期号:38 (4): 248-260 被引量:102
标识
DOI:10.1016/j.it.2017.01.001
摘要

NLRP6 is highly expressed in the small and large intestine, and has both inflammasome-dependent and -independent roles in the maintenance of intestinal homeostasis. NLRP6 inflammasome-induced interleukin (IL)-18 is modulated by microbial metabolites, and downstream IL-18 secretion induces an antimicrobial peptide program in intestinal epithelial cells that is critical to prevent dysbiosis. NLRP6 in sentinel goblet cells is required for mucus production, thereby preventing the invasion of enteric bacteria into the mucosal layer in an inflammasome-dependent, but IL-18-independent manner. In association with the helicase DHX15, NLRP6 is involved in antiviral responses upon viral RNA sensing, in an inflammasome-independent manner. In myeloid cells, NLRP6 negatively regulates NF-κB signaling and thereby suppresses inflammatory responses. NLRP6, a member of the nucleotide-binding domain, leucine-rich repeat-containing (NLR) innate immune receptor family, regulates inflammation and host defense against microorganisms. Similar to other NLRs, NLRP6 not only participates in inflammasome formation, but is also involved in nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling regulation and facilitation of gastrointestinal antiviral effector functions. Additionally, NLRP6 contributes to the regulation of mucus secretion and antimicrobial peptide production, thereby impacting intestinal microbial colonization and associated microbiome-related infectious, autoinflammatory, metabolic, and neoplastic diseases. However, several of the mechanisms attributed to the functions of NLRP6 remain debatable, leaving open questions as to the relevant molecular mechanisms and interacting partners, and putative human relevance. We herein discuss recent findings related to NLRP6 activity, while highlighting outstanding questions and future perspectives in elucidating its roles in health and disease. NLRP6, a member of the nucleotide-binding domain, leucine-rich repeat-containing (NLR) innate immune receptor family, regulates inflammation and host defense against microorganisms. Similar to other NLRs, NLRP6 not only participates in inflammasome formation, but is also involved in nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling regulation and facilitation of gastrointestinal antiviral effector functions. Additionally, NLRP6 contributes to the regulation of mucus secretion and antimicrobial peptide production, thereby impacting intestinal microbial colonization and associated microbiome-related infectious, autoinflammatory, metabolic, and neoplastic diseases. However, several of the mechanisms attributed to the functions of NLRP6 remain debatable, leaving open questions as to the relevant molecular mechanisms and interacting partners, and putative human relevance. We herein discuss recent findings related to NLRP6 activity, while highlighting outstanding questions and future perspectives in elucidating its roles in health and disease. an abnormal microbiome community, impacting the taxonomic composition as well as the metagenomic and metabolic function of the microbial community, that is linked to disease development. Compared with the healthy state, dysbiosis typically features blooms of pathobionts, and loss of commensals and diversity. Once the microbiota configuration is shifted, dysbiosis persists as a stable state and can assume various compositional manifestations, depending on the trigger. Several factors can drive the development of dysbiosis, including infection by a pathogen, diet, and xenobiotics, familial transmission, as well as genetics. a protein complex that functions as a sensor of the innate immune system, recognizing a diverse set of stimuli. Inflammasomes regulate the activation of caspase-1 and the production of the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18. PRRs are important components of the inflammasome complex, among them NLRs and ALRs. Upon activation, the inflammasome complex oligomerizes to activate caspase-1, with or without the adaptor protein apoptosis-associated speck-like protein containing a CARD (ASC). A non-canonical inflammasome formed by caspase-11 can activate caspase-1, detect intracellular lipopolysaccharide (LPS) and intracellular bacteria, and mediate pyroptotic cell death and IL-1α secretion, but not IL-1β secretion. the mammalian host harbors a dense microbial community, termed the ‘microbiota’. This complex community of microorganisms colonizes the gastrointestinal tract, respiratory system, skin, and urogenital system. The microbiota comprises bacteria, viruses, and eukaryotic microbes. cells of the innate immune system utilize germ line-encoded PRRs to sense the presence of pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Several classes of PRR exist and can be classified according to their ligand, the downstream signaling pathway as well as the type of immune response modulation. PRRs include Toll-like receptors (TLRs), C-type lectins (CTLs), NOD-like receptors (NLRs), RIG-I-like receptors (RLRs), AIM2-like receptors (ALRs), and OAS-like receptors (OLRs).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得150
2秒前
852应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
4秒前
英俊的铭应助标致乐双采纳,获得10
6秒前
小胖完成签到 ,获得积分10
6秒前
脑洞疼应助布丁采纳,获得10
8秒前
正在努力的学术小垃圾完成签到 ,获得积分10
9秒前
Raphael完成签到,获得积分10
9秒前
10秒前
温馨家园完成签到 ,获得积分10
10秒前
小华完成签到 ,获得积分10
11秒前
Augustines完成签到,获得积分10
12秒前
weilei完成签到,获得积分10
13秒前
15秒前
机智乐驹完成签到,获得积分10
16秒前
17秒前
爱拱地的小林猪完成签到,获得积分10
17秒前
文静的峻熙完成签到,获得积分10
17秒前
17秒前
Splaink完成签到 ,获得积分10
17秒前
ss发布了新的文献求助30
20秒前
复杂的keke完成签到,获得积分20
20秒前
20秒前
alho完成签到 ,获得积分10
21秒前
动人的向松完成签到 ,获得积分10
22秒前
阳光萌萌发布了新的文献求助10
24秒前
26秒前
rick3455完成签到 ,获得积分10
27秒前
流星雨完成签到 ,获得积分10
27秒前
标致乐双发布了新的文献求助10
27秒前
科研通AI5应助VitoLi采纳,获得10
28秒前
嘻嘻完成签到,获得积分10
28秒前
xmut完成签到,获得积分10
29秒前
小芭乐完成签到 ,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5090182
求助须知:如何正确求助?哪些是违规求助? 4304774
关于积分的说明 13414844
捐赠科研通 4130466
什么是DOI,文献DOI怎么找? 2262342
邀请新用户注册赠送积分活动 1266229
关于科研通互助平台的介绍 1200912