材料科学
微秒
激光器
吸收(声学)
光学
光声多普勒效应
放松(心理学)
通量
分辨率(逻辑)
信号(编程语言)
生物医学中的光声成像
光声效应
脉搏(音乐)
显微镜
显微镜
物理
心理学
社会心理学
人工智能
探测器
计算机科学
程序设计语言
作者
Lidai Wang,Chi Zhang,Lihong V. Wang
标识
DOI:10.1103/physrevlett.113.174301
摘要
The temperature-dependent property of the Grueneisen parameter has been employed in photoacoustic imaging mainly to measure tissue temperature. Here we explore this property using a different approach and develop Grueneisen relaxation photoacoustic microscopy (GR-PAM), a technique that images nonradiative absorption with confocal optical resolution. GR-PAM sequentially delivers two identical laser pulses with a microsecond-scale time delay. The first laser pulse generates a photoacoustic signal and thermally tags the in-focus absorbers. When the second laser pulse excites the tagged absorbers within the thermal relaxation time, a photoacoustic signal stronger than the first one is produced, owing to the temperature dependence of the Grueneisen parameter. GR-PAM detects the amplitude difference between the two colocated photoacoustic signals, confocally imaging the nonradiative absorption. We greatly improved axial resolution from $45\text{ }\text{ }\ensuremath{\mu}\mathrm{m}$ to $2.3\text{ }\text{ }\ensuremath{\mu}\mathrm{m}$ and, at the same time, slightly improved lateral resolution from $0.63\text{ }\text{ }\ensuremath{\mu}\mathrm{m}$ to $0.41\text{ }\text{ }\ensuremath{\mu}\mathrm{m}$. In addition, the optical sectioning capability facilitates the measurement of the absolute absorption coefficient without fluence calibration.
科研通智能强力驱动
Strongly Powered by AbleSci AI